The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap...Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.展开更多
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin...Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the func...TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the functional properties. The effects of both thermodynamically stable and metastable second phases on the mechanical properties and martensitic transformations of these alloys were investigated. It is found that thermodynamically stable Ti2Ni phase has no effect on martensitic transformation and superelasticity of Ti-rich TiNi alloy, thermodynamically stable α phase is harmful for ductility of Ti-Mo-Nb-V-Al alloy, but metastable Ti3Ni4 phase is effective for R phase transformation, martensitic transformation and superelasticity of Ni-rich TiNi alloy. The mechanisms of the second phases on the martensitic transformations and mechanical properties were discussed.展开更多
Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence...Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.展开更多
Ni Ti shape memory alloy samples were aged for 2 h at 573, 723 and 873 K, respectively. Two R-phase variants are observed in the Ni Ti samples aged at 573 and 723 K, where the orientation relationship between the two ...Ni Ti shape memory alloy samples were aged for 2 h at 573, 723 and 873 K, respectively. Two R-phase variants are observed in the Ni Ti samples aged at 573 and 723 K, where the orientation relationship between the two R-phase variants and the B2 matrix is determined. In the Ni Ti samples aged at 573 and 723 K, fine and homogeneous Ni4Ti3 precipitates are coherent with the B2 austenite matrix. The Ni4Ti3 particles precipitate in the grain interior and at the grain boundaries, where the heterogeneous Ni4Ti3 precipitates are coherent, semi-coherent and incoherent with the B2 matrix in the Ni Ti sample aged at 873 K. As for the Ni Ti sample aged at 873 K, one-stage phase transformation from B19' martensite to B2 austenite occurs on heating, but two-stage phase transformation of B2-R-B19' arises on cooling. The Ni Ti sample aged at 723 K shows two-stage phase transformation of B2-R-B19' on cooling as well, but exhibits two-stage phase transformation of B19'-R-B2 on heating. The Ni Ti sample aged at 573 K exhibits three-stage transformation on cooling due to local stress inhomogeneity and local composition inhomogeneity around the Ni4Ti3 precipitates.展开更多
The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met...The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation.展开更多
The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased mor...The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.展开更多
In this article, the influence of Co addition on phase transformation behavior and mechanical properties of TiNiFe shape memory alloy was investigated extensively. Differential scanning calorimetry (DSC) measurement...In this article, the influence of Co addition on phase transformation behavior and mechanical properties of TiNiFe shape memory alloy was investigated extensively. Differential scanning calorimetry (DSC) measurements shows that martensitic start transformation temperatures (Ms) decrease drastically with increasing Co content, while the R phase transformation start temperatures (Rs) vary slightly. Nevertheless, the substitution of Ni with Co does not exert substantial influence on the two-stage transformation behavior of the TiNiFe alloy. The results from stress-strain curves indicate that higher critical stress for stress-induced martensitic transformation (σSIM) has been obtained because of Co addition. In such cases, the Ti50Ni48sFelCO1.0 alloy maintains a good shape memory effect, and a maximum recoverable strain of 7.5 % can be obtained.展开更多
A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic m...A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic montmorillonite (OMMT) as a support material. And the thermal properties and morphology of the SSPCM were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electronic microscope (SEM), scanning calorimeter (DSC), and differential thermal cravimetry (TG). The DSC result shows that the phase change temperature of the SSPCM is close to that of LA, and its latent heat is equivalent to that of the calculated value based on the mass ratio of LA measured by TG. The XRD, SEM and TEM results demonstrate that the LA intercalates into the silicate layers of the OMMT, thus forming a typically intercalted hybrid, which can restrict the molecular chain of the LA within the structure of OMMT at high temperature. And consequently SSPCM can keep its solid state during its solid-liquid phase change processing.展开更多
The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to parama...The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to paramagnetic state when the temperuture rises. The Fe-Mn-Si alloys have a small hyperfine field and silicon element increases the hyperfine field and magnetic susceptibility. Thermo-induced γ→ ε trunsforma-tions are suppressed by Neel transition and by increasing carbon content, whereas stress induced γ→ ε transformation occurs in both alloys. Antiferromagnetic spin order can suppress thermo-induced γ→εtransformations efficiently, but cannot sup-press stress induced γ → ε transformation.展开更多
The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is...The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.展开更多
Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation beh...Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.展开更多
The transformation behavior of a TiNiCu shape memory alloy electrolyticallycharged with hydrogen was investigated by means of different scanning calorimetry (DSC), opticalmicroscope and X-ray diffraction (XRD). The re...The transformation behavior of a TiNiCu shape memory alloy electrolyticallycharged with hydrogen was investigated by means of different scanning calorimetry (DSC), opticalmicroscope and X-ray diffraction (XRD). The results showed that inter- and inner-granular hydridesformed after charging with hydrogen, and the hydrides suppressed martensitic transformation. Theelectrolytically charged hydrogen can be easily released by heat treatment and the transformationoccurred again, which was verified by the DSC and XRD experiments.展开更多
A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The ef-fect of different lance heights on the cavity shape was investigated using the volume of flu...A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The ef-fect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth de-creases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.展开更多
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t...Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020YQ39, ZR2020ZD05)Taishan Scholar Foundation of Shandong Province (tsqn202211002)the Young Scholars Program of Shandong University (Grant Number 2018WLJH24)
文摘Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.
文摘Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金Project (50671067) supported by the National Natural Science Foundation of ChinaProject (09JC1407200) supported by the Science and Technology Committee of Shanghai, China
文摘TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the functional properties. The effects of both thermodynamically stable and metastable second phases on the mechanical properties and martensitic transformations of these alloys were investigated. It is found that thermodynamically stable Ti2Ni phase has no effect on martensitic transformation and superelasticity of Ti-rich TiNi alloy, thermodynamically stable α phase is harmful for ductility of Ti-Mo-Nb-V-Al alloy, but metastable Ti3Ni4 phase is effective for R phase transformation, martensitic transformation and superelasticity of Ni-rich TiNi alloy. The mechanisms of the second phases on the martensitic transformations and mechanical properties were discussed.
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProjects (HEUCFR1132, HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.
基金Projects(513050915130509251475101)supported by the National Natural Science Foundation of China
文摘Ni Ti shape memory alloy samples were aged for 2 h at 573, 723 and 873 K, respectively. Two R-phase variants are observed in the Ni Ti samples aged at 573 and 723 K, where the orientation relationship between the two R-phase variants and the B2 matrix is determined. In the Ni Ti samples aged at 573 and 723 K, fine and homogeneous Ni4Ti3 precipitates are coherent with the B2 austenite matrix. The Ni4Ti3 particles precipitate in the grain interior and at the grain boundaries, where the heterogeneous Ni4Ti3 precipitates are coherent, semi-coherent and incoherent with the B2 matrix in the Ni Ti sample aged at 873 K. As for the Ni Ti sample aged at 873 K, one-stage phase transformation from B19' martensite to B2 austenite occurs on heating, but two-stage phase transformation of B2-R-B19' arises on cooling. The Ni Ti sample aged at 723 K shows two-stage phase transformation of B2-R-B19' on cooling as well, but exhibits two-stage phase transformation of B19'-R-B2 on heating. The Ni Ti sample aged at 573 K exhibits three-stage transformation on cooling due to local stress inhomogeneity and local composition inhomogeneity around the Ni4Ti3 precipitates.
基金Funded by National Natural Science Foundation of China(No.51308275)Natural Science Foundation of Liaoning Province(No.SY2016004)Science Foundation for Young Scientists of Liaoning Educational Committee(No.JQL201915403).
文摘The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation.
文摘The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.
基金financially supported by the National Natural Science Foundation of China (No. 50921003)the Industry, Education and Research Projects of the China Aviation Industrial (No.cxy2012BH04)
文摘In this article, the influence of Co addition on phase transformation behavior and mechanical properties of TiNiFe shape memory alloy was investigated extensively. Differential scanning calorimetry (DSC) measurements shows that martensitic start transformation temperatures (Ms) decrease drastically with increasing Co content, while the R phase transformation start temperatures (Rs) vary slightly. Nevertheless, the substitution of Ni with Co does not exert substantial influence on the two-stage transformation behavior of the TiNiFe alloy. The results from stress-strain curves indicate that higher critical stress for stress-induced martensitic transformation (σSIM) has been obtained because of Co addition. In such cases, the Ti50Ni48sFelCO1.0 alloy maintains a good shape memory effect, and a maximum recoverable strain of 7.5 % can be obtained.
文摘A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic montmorillonite (OMMT) as a support material. And the thermal properties and morphology of the SSPCM were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electronic microscope (SEM), scanning calorimeter (DSC), and differential thermal cravimetry (TG). The DSC result shows that the phase change temperature of the SSPCM is close to that of LA, and its latent heat is equivalent to that of the calculated value based on the mass ratio of LA measured by TG. The XRD, SEM and TEM results demonstrate that the LA intercalates into the silicate layers of the OMMT, thus forming a typically intercalted hybrid, which can restrict the molecular chain of the LA within the structure of OMMT at high temperature. And consequently SSPCM can keep its solid state during its solid-liquid phase change processing.
文摘The hyperfine interactions of two shape memory alloys have been studied by Mossbauer effect measurement at various temperatures. The Mossbauer spectra exhibit a mag-netic change from antiferro magnetic state to paramagnetic state when the temperuture rises. The Fe-Mn-Si alloys have a small hyperfine field and silicon element increases the hyperfine field and magnetic susceptibility. Thermo-induced γ→ ε trunsforma-tions are suppressed by Neel transition and by increasing carbon content, whereas stress induced γ→ ε transformation occurs in both alloys. Antiferromagnetic spin order can suppress thermo-induced γ→εtransformations efficiently, but cannot sup-press stress induced γ → ε transformation.
基金Funded by the National Natural Science Foundation of China(No.50071037)
文摘The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.
文摘Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.
基金This project is financially supported by the National Natural Science Foundation of China (No.10175042) and by the Pro-gram for New Century Excellent Talents in Universities.
文摘The transformation behavior of a TiNiCu shape memory alloy electrolyticallycharged with hydrogen was investigated by means of different scanning calorimetry (DSC), opticalmicroscope and X-ray diffraction (XRD). The results showed that inter- and inner-granular hydridesformed after charging with hydrogen, and the hydrides suppressed martensitic transformation. Theelectrolytically charged hydrogen can be easily released by heat treatment and the transformationoccurred again, which was verified by the DSC and XRD experiments.
文摘A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The ef-fect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth de-creases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.
基金Funded by the National Key Technologies Research and Development Program of China(No.2006BAJ04A16)
文摘Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.