期刊文献+
共找到4,130篇文章
< 1 2 207 >
每页显示 20 50 100
A New Kind of Shape-stabilized Phase Change Materials 被引量:2
1
作者 肖力光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期491-494,共4页
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t... Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC. 展开更多
关键词 phase change material(PCM) shape-stabilized phase change materials high density polyethylene
下载PDF
Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials
2
作者 Shuo Deng Mengxi Cui +7 位作者 Jingru Jiang Chuang Wang Zengguang Cheng Huajun Sun Ming Xu Hao Tong Qiang He Xiangshui Miao 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期46-53,共8页
All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and ... All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies. 展开更多
关键词 structural color RECONFIGURABLE all-dielectric metasurfaces phase change material
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
3
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Scattered Co-anchored MoS_(2)synergistically boosting photothermal capture and storage of phase change materials
4
作者 Yang Li Panpan Liu +3 位作者 Yan Gao Yuhao Feng Peicheng Li Xiao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期208-215,I0005,共9页
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ... Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization. 展开更多
关键词 phase change materials Photothermal conversion Thermal energy storage
下载PDF
Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials
5
作者 Inga Zotova Edgars Kirilovs Laura Ziemele 《Journal of Renewable Materials》 EI CAS 2024年第3期603-613,共11页
Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce... Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies. 展开更多
关键词 Encapsuled phase change material renewable resources reaction to fire FLAMMABILITY
下载PDF
Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems
6
作者 P.S.REDDY P.SREEDEVI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1051-1070,共20页
The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage dev... The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste. 展开更多
关键词 volume fraction of nano-encapsulated phase change material(NEPCM) RADIATION Stefan number heat capacity ratio entropy generation
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
7
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Actively tuning anisotropic light-matter interaction in biaxial hyperbolic materialα-MoO_(3) using phase change material VO_(2) and graphene
8
作者 周昆 胡杨 +2 位作者 吴必园 仲晓星 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期631-638,共8页
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob... Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials. 展开更多
关键词 light-matter interaction hyperbolic material phase change material GRAPHENE
下载PDF
Tightened1D/3Dcarbonheterostructure infiltratingphase change materials for solar-thermoelectric energy harvesting:Faster and better 被引量:2
9
作者 Zhaodi Tang Piao Cheng +3 位作者 Panpan Liu Yan Gao Xiao Chen Ge Wang 《Carbon Energy》 SCIE CSCD 2023年第6期104-117,共14页
Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion techn... Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion technology based on the Seebeck effect and thermal energy storage technology based on phase change materials(PCMs)represent smart,feasible,and research-worthy approaches to overcome this hurdle.However,the integration of multiple thermal energy sources freely existing in the environment for storage and output of thermal and electrical energy simultaneously still remains a huge challenge.Herein,three-dimensional(3D)nanostructured metal-organic frameworks(MOFs)are in situ nucleated and grown onto carbon nanotubes(CNTs)via coordination bonding.After calcination,the prepared core-shell structural CNTs@MOFs are transformed into tightened 1D/3D carbon heterostructure loading Co nanoparticles for efficient solar-thermoelectric energy harvesting.Surprisingly,the corresponding composite PCMs show a record-breaking solar-thermal conversion efficiency of 98.1%due to the tightened carbon heterostructure and the local surface plasmon resonance effect of Co nanoparticles.Moreover,our designed all-in-one composite PCMs are also capable of creating an electrical potential of 0.5 mV based on the Seebeck effect without a TE generator.This promising approach can store thermal and electrical energy simultaneously,providing a new direction in the design of advanced all-in-one multifunctional PCMs for thermal energy storage and utilization. 展开更多
关键词 carbon neutrality metal-organic framework phase change materials solar-thermoelectric conversion thermal energy storage
下载PDF
Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials 被引量:2
10
作者 Xiaoyan Zhang Tianrun Cao +3 位作者 Lang Liu Baoyun Bu Yaping Ke Qiangqiang Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期250-259,共10页
CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the ... CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials(CEV)was prepared by atmospheric impregnation method.Using gold mine tailings as aggregate of cemented paste backfill(CPB)material,the CPB with CEV added was prepared,and the specific heat capacity,thermal conductivity,and uniaxial compressive strength(UCS)of CPB with different cement-tailing ratios and CEV addition ratios were tested,the influence of the above variables on the thermal and mechanical properties of CPB was analyzed.The results show that the maximum encapsulation capacity of expanded vermiculite for CaCl_(2)·6H_(2)O is about 60%,and the melting and solidification enthalpies of CEV can reach 98.87 J/g and 97.56 J/g,respectively.For the CPB without CEV,the specific heat capacity,thermal conductivity,and UCS decrease with the decrease of cement-tailing ratio.For the CPB with CEV added,with the increase of CEV addition ratio,the specific heat capacity increases significantly,and the sensible heat storage capacity and latent heat storage capacity can be increased by at least 10.74%and 218.97%respectively after adding 12%CEV.However,the addition of CEV leads to the increase of pores,and the thermal conductivity and UCS both decrease with the increase of CEV addition.When cement-tailing ratio is 1:8 and 6%,9%,and 12%of CEV are added,the 28-days UCS of CPB is less than 1 MPa.Considering the heat storage capacity and cost price of backfill,the recommended proportion scheme of CPB material presents cement-tailing ratio of 1:6 and 12%CEV,and the most recommended heat storage/release temperature cycle range of CPB with added CEV is from 20 to 40℃.This work can provide theoretical basis for the utilization of heat storage backfill in green mines. 展开更多
关键词 CaCl_(2)·6H_(2)O/expanded vermiculite shape stabilized phase change materials cemented paste backfill thermal property mechanical property
下载PDF
Numerical Study on the Combined Use of Corten Steel and Phase Change Materials in Container-Type Houses 被引量:1
11
作者 Feriel Mustapha Marwa El Yassi +3 位作者 Ikram El Abbassi Abdelhak Kaci Elhadj Kadri A-Moumen Darcherif 《Fluid Dynamics & Materials Processing》 EI 2023年第4期953-958,共6页
A study is presented on the feasibility of an approach based on the combination of Phase Change Materials(PCM)with metal walls in container-type houses.This line of research finds its motivations in recent trends in t... A study is presented on the feasibility of an approach based on the combination of Phase Change Materials(PCM)with metal walls in container-type houses.This line of research finds its motivations in recent trends in the energy and building sectors about energy consumption reduction.Another important objective concerns possible improvements in the comfort provided by such houses during the summer period.The results obtained through numerical solution of the governing equations accounting for heat transfer and latent heat effects associated with the PCM show that the indoor temperature can be reduced with a varying degree of success depending on the considered conditions. 展开更多
关键词 Metallic wall phase change materials corten steel thermal comfort
下载PDF
Shape-stabilized phase change materials with high phase change enthalpy based on synthetic comb-like poly(acrylonitrile-co-ethylene glycol)for thermal management 被引量:3
12
作者 Wei Chen Hengxue Xiang +2 位作者 Yunmeng Jiang Sayed Yaseen Rashdi Meifang Zhu 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第11期1450-1457,共8页
Shape-stabilized poly(acrylonitrile-co-ethylene glycol) (PANEG) copolymer with comb-like structure was prepared via simple free-radical solution polymerization, where acrylic acid poly(ethylene glycol) methyl et... Shape-stabilized poly(acrylonitrile-co-ethylene glycol) (PANEG) copolymer with comb-like structure was prepared via simple free-radical solution polymerization, where acrylic acid poly(ethylene glycol) methyl ether ester (MPEGA) and acrylonitrile (AN) were employed as monomers. Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance spectroscopy (1H and 13C NMR), wide-angle X-ray diffraction (WXAD) were used to characterize the chemical structure of resultant PANEG. In addition, the influences of MPEGA contents on energy storage performance, thermal reliability and thermal stability of PANEG materials were evaluated based on differential scanning calorimetry (DSC), polarizing optical microscopy (POM), thermal infrared imager and thermogravimetry analyzer (TG). The comb-like PANEG demonstrated a favorable temperature regulation performance and thermal reliability. With the increase of MPEGA contents, the enthalpy of PANEG increased, and when the content of MPEGA was 80 wt%, the phase change enthalpy of synthesized PANEG-80 reached to 106.70 J/g with a stable heat storage performance after 100 thermal cycling. Thermal infrared images and cooling curves revealed that synthetic PANEG could sustain a temperature in ranges of 22-31 ℃ for continuous 25 min, presenting excellent temperature regulation performance. Also, comb-like PANEG could be uniformly dissolved in dimethyl sulfoxide (DMSO), indicating that PANEG phase change fibers with potential applications in fields of intelligent thermoregulating textile and heat energy management could be obtained via one-step wet spinning. 展开更多
关键词 phase change material ACRYLONITRILE poly(ethylene glycol) derivative thermal management
原文传递
Active control of surface plasmon polaritons with phase change materials
13
作者 漆元臻 蒋瞧 +1 位作者 向红 韩德专 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期428-432,共5页
Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telec... Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration. 展开更多
关键词 surface plasmon polaritons phase change materials direction control non-diffractive
下载PDF
Spatiotemporal phase change materials for thermal energy long-term storage and controllable release
14
作者 Yangeng Li Yan Kou +4 位作者 Keyan Sun Jie Chen Chengxin Deng Chaohe Fang Quan Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期228-236,I0006,共10页
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent... Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs. 展开更多
关键词 phase change materials Long-term thermal storage Controllable release ERYTHRITOL
下载PDF
The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability
15
作者 Jianhui Zhou Guohao Du +3 位作者 Jianfeng Hu Xin Lai Shan Liu Zhengguo Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期11-21,共11页
Adopting organic phase change materials(PCMs) for the management of electronic devices is restricted by low thermal conductivity. In this paper, the composite PCMs are established by freeze-drying and vacuum impregnat... Adopting organic phase change materials(PCMs) for the management of electronic devices is restricted by low thermal conductivity. In this paper, the composite PCMs are established by freeze-drying and vacuum impregnation. Herein, polyethylene glycol(PEG) is induced as heat storage materials, boron nitride(BN) is embedded as filler stacking in an orderly fashion on the foam walls to improve thermal conductivity and sodium alginate(SA) is formed as supporting material to keep the shape of the composite stable. X-ray diffractometry, scanning electron microscopy-energy dispersive spectrometer, thermal gravimetric analysis, thermal conductivity meter, differential scanning calorimeter, and Fourier transform infrared were used to characterize the samples and thermal cycles were employed to measure the shape stability. The results exhibit the BN@SA/PEG composite PCMs have good chemical compatibility, stable morphology, and thermal stability. Due to the high porosity of foam, PEG endows the composite PCMs with high latent heat(149.11 and 141.59 J·g^(-1)). Simultaneously, BN@SA/PEG shows an excellent heat performance with high thermal conductivity(0.99 W·m^(-1)·K^(-1)), reusability, and shape stability, contributing the composite PCMs to application in the energy storage field. This study provides a strategy to manufacture flexible, long-serving, and shape-stable PCMs via introducing BN@SA foam as a storage framework, and these PCMs have great potential in thermal management in the electronic field. 展开更多
关键词 Porous structure Boron nitride Organic phase change material Thermal conductivity Energy storage
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
16
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
下载PDF
Multifunctional phase change film with high recyclability, adjustable thermal responsiveness, and intrinsic self-healing ability for thermal energy storage
17
作者 Bo Yang Xuelai Zhang +2 位作者 Jun Ji Weisan Hua Miaomiao Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期216-227,I0005,共13页
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic... Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability. 展开更多
关键词 phase change film Multifunctional material Energy storage SELF-HEALING RECYCLABILITY
下载PDF
Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage 被引量:5
18
作者 孟多 ZHAO Kang +1 位作者 WANG Anqi WANG Baomin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期231-239,共9页
The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met... The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation. 展开更多
关键词 shape-stabilized phase change material phase change PARAFFIN polymethyl METHACRYLATE temperature regulation BUILDING energy conservation
下载PDF
Melting Intercalation Method to Prepare Lauric Acid/Organophilic Montmorillonite Shape-stabilized Phase Change Material 被引量:3
19
作者 陈美祝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期674-677,共4页
A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic m... A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic montmorillonite (OMMT) as a support material. And the thermal properties and morphology of the SSPCM were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electronic microscope (SEM), scanning calorimeter (DSC), and differential thermal cravimetry (TG). The DSC result shows that the phase change temperature of the SSPCM is close to that of LA, and its latent heat is equivalent to that of the calculated value based on the mass ratio of LA measured by TG. The XRD, SEM and TEM results demonstrate that the LA intercalates into the silicate layers of the OMMT, thus forming a typically intercalted hybrid, which can restrict the molecular chain of the LA within the structure of OMMT at high temperature. And consequently SSPCM can keep its solid state during its solid-liquid phase change processing. 展开更多
关键词 shape-stabilized phase change material lauric acid organophilic montmorillonite melting intercalation
下载PDF
Preparation and Characterization of Sodium Sulfate/Silica Composite as a Shape-stabilized Phase Change Material by Sol-gel Method 被引量:7
20
作者 郭强 王涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期360-364,共5页
A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a ... A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2 acts as a support material to provide structural strength and prevent leakage of melted NazSO4. The microstructure and composition of the prepared composite were characterized by the N2 adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SOJSiO2 composite is a nanostructured hybrid of NazSO4 and SiO2 without new substances produced during the phase change. The macroscopic shape of the NazSO4/SiO2 composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared NazSO4/SiO2 (50%, by mass) composite are 82.3 kJ.kg i and 83.7 kJ.kg-1, and temperatures of melting and freezing are 886.0 ℃ and 880.6 ℃, respectively. Furthermore, the Na2SOJSiO2 composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage. 展开更多
关键词 sodium sulfate silicon dioxide phase change material shape-stabilized sol-gel method
下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部