Recent experimental data for anomalous magnetic moments strongly indicates the existence of new physics beyond the Standard Model.Energetic μ^(+) bunches are relevant to μ^(+) rare decay,spin rotation,resonance and ...Recent experimental data for anomalous magnetic moments strongly indicates the existence of new physics beyond the Standard Model.Energetic μ^(+) bunches are relevant to μ^(+) rare decay,spin rotation,resonance and relaxation(μSR)technology,future muon colliders,and neutrino factories.In this paper,we propose prompt μ^(+) acceleration in a nonlinear toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian(LG)laser pulse.An analytical model is described,which shows that a μ^(+) beam can be focused by an electron cylinder at the centerline of a toroidal bubble and accelerated by the front part of the longitudinal wakefield.A shaped LG laser with a short rise time can push plasma electrons,generating a higher-density electron sheath at the front of the bubble,which can enhance the acceleration field.The acceleration field driven by the shaped steep-rising-front LG laser pulse is about four times greater than that driven by a normal LG laser pulse.Our simulation results show that a 300 MeV μ^(+) bunch can be accelerated to 2 GeV and its transverse size is focused from an initial value of w_(0)=5μm to w=2μm in the toroidal bubble driven by the shaped steep-rising-front LG laser pulse with a normalized amplitude of a=22.展开更多
Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large...Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.展开更多
The Multi layer coating of Ni60 alloy was got by multi layer laser cladding. The height of the coating was about 12mm and the wall of the coating was perpendicular to the base. The microstructure of the coating was ...The Multi layer coating of Ni60 alloy was got by multi layer laser cladding. The height of the coating was about 12mm and the wall of the coating was perpendicular to the base. The microstructure of the coating was made up of fine dendrite. The conjunction between layers was good.展开更多
A new controllable laser beam shaping technique is demonstrated, where a magnetic fluid-based liquid deformable mirror is proposed to redistribute the laser phase profile and thus change the propagation property of th...A new controllable laser beam shaping technique is demonstrated, where a magnetic fluid-based liquid deformable mirror is proposed to redistribute the laser phase profile and thus change the propagation property of the beam. The mirror is driven by an inner miniature actuator array along with a large outer actuator. The inner actuator array is used for deforming the magnetic fluid surface, while the outer actuator is used to linearize the fluid surface response and amplify the magnitude of the deflection. In comparison to other laser beam shaping techniques, this technique offers the advantages such as simplicity, low cost, large shape deformation, and high adaptability. Based on a fabricated prototype of the liquid deformable mirror, an experimental AO system was set up to produce a desired conical surface shape that shaped the incident beam into a Bessel beam. The experimental results show the effectiveness of the proposed technique for laser beam shaping.展开更多
In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process i...In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process is established and the necessary assumptions are made.Then,the establishment process of the multi-physical field model of the melt pool is introduced in detail.It is concluded that the simulation model results are highly consistent with the online measurement experiment results in terms of melt pool profile,space temperature gradient,and time temperature gradient.Meanwhile,some parameters,such as the 3D morphology and surface fluid field of the melt pool,which are not obtained in the online measurement experiment,are analyzed.Finally,the influence of changing the scanning speed on the profile,peak temperature,and temperature gradient of the single-line melt pool is also analyzed,and the following conclusions are obtained:With the increase in scanning speed,the profile of the melt pool gradually becomes slender;The relationship between peak temperature and scanning speed is approximately linear in a certain speed range;The space temperature gradient at the tail of the melt pool under different scanning speeds hardly changes with the scanning speed,and the time temperature gradient at the tail of the melt pool is in direct proportion to the scanning speed.展开更多
The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory(NSRL)is a diffraction-limited storage ring(DLSR),which plans to use a full energy linac as the injector.To ensure inject...The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory(NSRL)is a diffraction-limited storage ring(DLSR),which plans to use a full energy linac as the injector.To ensure injection efficiency,the injection beam needs to have low emittance.Therefore,a photocathode radio frequency(RF)gun was developed in the HALF R&D project.The gun is designed to deliver high-quality electron bunches with a typically 0.5 nC charge and~4.5 MeV energy with low emittance.The initial system commission with an electron beam was completed at the end of 2020,and a stable 1.2–1.4 mm.mrad emittance with a bunch charge of 500 pC was demonstrated.In this paper,we report the experimental results and experience obtained during the commission,including the RF gun,drive laser system,and beam diagnostics.展开更多
An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the...An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and展开更多
In this paper, laser melting deposition(LMD), a new advanced manufacture technology. While manufacturing a metal part by LMD process, if we could control the energy distribution in internal different areas such as cla...In this paper, laser melting deposition(LMD), a new advanced manufacture technology. While manufacturing a metal part by LMD process, if we could control the energy distribution in internal different areas such as cladding layer or that between cladding layer and the substrate with optimal process parameters, the probability of internal defects of parts can be reduced, and the mechanical properties of parts will be greatly improved. To address the problem that whether the part made by LMD has internal defects, in this paper we designed the orthogonal rotation experiments through selecting different process parameters. Then a Logistic Regression model was built based on the experiments data. The calculation result of the regression model was in good agreement with the result of authentication test. Therefore, this Logistic Regression model has important reference for selecting LMD process parameters.展开更多
We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring g...We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring grooves.We also characterized the 3D beam pro¯le by using a crossshaped knife-edge fabricated on a silicon photo-detector.The size of the super-resolution dark spot in the tube is 0.32,which remains unchanged for4within the tube.This optical tube may¯nd applications in super-resolution microscopy,optical trapping and particle acceleration.展开更多
An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse.A ...An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse.A radiation source with a flattop temperature of about130 e V that lasted about 5 ns was obtained.The previous analytical iteration method based on power balance and self-similar solution of ablation was modified taking into account the plasma movements and it was used to design the laser pulse shape for experiment.A comparison between experimental results and simulation is presented and better agreement was achieved using the modified method.Further improvements are discussed.展开更多
The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surf...The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .展开更多
A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the...A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.展开更多
A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to ...A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to a flat top beam profile with a uniform intensity distribution. A flat top beam with intensity variation of approx. 5% and flat top diameter to spot diameter ratio of 67% has been achieved. This device can also change the beam shape from a Gaussian to a donut by moving the observation plane. A flat top multimode fiber beam delivery is attractive for applications which require high power and uniform intensity distribution. In single mode fiber, concave tips could be used to reduce the beam spot size diameter, enabling efficient light coupling from a single mode fiber to an integrated optical waveguide.展开更多
The functionally gradient material laser rapid prototyping system is developed based on the increasing material manufacture idea of the rapid prototyping. The system hardware is composed of a 5 kW CO2 laser, a three-d...The functionally gradient material laser rapid prototyping system is developed based on the increasing material manufacture idea of the rapid prototyping. The system hardware is composed of a 5 kW CO2 laser, a three-dimensional numeric control table, a three-stock-bin coaxial powder delivery device, and an integration operation control desk. The system software is composed of the CAD slicing and scan filling module, materials component distributing design module, and hardware equipment integration drive module. The real time change proportion allocation technique of three metal powders, powder uniform mixing technique, and coaxial powder delivery technique are studied. According to the principle of the output powder cumulative volume invariable in unit time, the real time powder allocation formulae are deduced. The design method of the materials component distributing regularity in the part entity is studied. The gradient change regularity of the face gradient, line gradient, and point gradient is studied. A sort of the file layout of integrating material information and geometry information is brought forward.展开更多
We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering ce...We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. By creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass' lithography.展开更多
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p...Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.展开更多
This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in si...This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in situ Ti-TiB composite materials produced by selective laser melting (SLM) technology. Starting powder composite system was prepared by mixing 95 wt% commercially pure titanium (CP-Ti) and 5 wt% titanium diboride (TiB2) powders and subsequently milled for two different times (i.e. 2 h and 4 h). The milled powder mixtures after 2 h and 4 h show nearly spherical and irregular shape, respectively. Subsequently, the resultant Ti-5 wt% TiB2 powder mixtures were used for SLM processing. Scanning electron microscopy image of the SLM-processed Ti-TiB composite samples show needle-shape TiB phase distributed across the Ti matrix, which is the product of an in-situ chemical reaction between Ti and TiB2 during SLM. The Ti-TiB composite samples prepared from 2 h and 4 h milled Ti-TiB2 powders show different relative densities of 99.5% and 95.1%, respectively. Also, the compression properties such as ultimate strength and compression strain for the 99.5% dense composite samples is 1421 MPa and 17.8%, respectively, which are superior to those (883 MPa and 5.5%, respectively) for the 95.1% dense sample. The results indicate that once Ti and TiB2 powders are connected firmly to each other and powder mixture of nearly spherical shape is obtained, there is no additional benefit in increasing the milling time and, instead, it has a negative effect on the density (i.e. increasing porosity level) of the Ti-TiB composite materials and their mechanical properties.展开更多
The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low tr...The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm·mrad to 3.66 πmm·mrad.展开更多
SwissFEL is a compact,high-brilliance,soft and hard X-ray free electron laser(FEL)facility that started user operation in 2019.The facility is composed of two parallel beam lines seeded by a common linear accelerator(...SwissFEL is a compact,high-brilliance,soft and hard X-ray free electron laser(FEL)facility that started user operation in 2019.The facility is composed of two parallel beam lines seeded by a common linear accelerator(LINAC),and a two-bunch photo-injector.For the injector,an innovative dual-photocathode laser scheme has been developed based on state-of-the-art ytterbium femtosecond laser systems.In this paper,we describe the performance of the Swiss FEL photocathode drive lasers(PCDLs),the pulse-shaping capabilities as well as the versatility of the systems,which allow many different modes of operation of Swiss FEL.The full control over the Swiss FEL electron bunch properties via the unique architecture of the PCDLs will enable in the future the advent of more-advanced FEL modes;these modes include,but are not restricted to,the generation of single or trains of sub-femtosecond FEL pulses,multi-color FEL and finally,the generation of fully coherent X-ray pulses via laser-based seeding.展开更多
Application of a thermal source in non-contact forming of sheet metal is known for some time. Replacement of this thermal source with a laser beam promises the much greater controllability of the process. To date, res...Application of a thermal source in non-contact forming of sheet metal is known for some time. Replacement of this thermal source with a laser beam promises the much greater controllability of the process. To date, research focuses on dealing with rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. This study presents the work to get the dish or bowl shape by an initially flat circular plate. Two different scanning strategies circular and radial are attempted to get the desired dish shape. Following the unexpected distortion throughout the plate, a second series of experiments are conducted on a wide range of specimen geometries. An interesting phenomenon is observed. It is suggested that homogeneous dissemination of heat along with combined form of both of the scanning strategies, could have more potential to form dome shape.展开更多
基金supported in part by the National Key R&D Program of China(No.2018YFA0404802)National Natural Science Foundation of China(No.11875319)+2 种基金the Hunan Provincial Science and Technology Program(No.2020RC4020)Innovation Project of IHEP(Nos.542017IHEPZZBS11820,542018IHEPZZBS12427)the CAS Center for Excellence in Particle Physics(CCEPP),the Meritocracy Research Funds of China West Normal University(No.17YC504)。
文摘Recent experimental data for anomalous magnetic moments strongly indicates the existence of new physics beyond the Standard Model.Energetic μ^(+) bunches are relevant to μ^(+) rare decay,spin rotation,resonance and relaxation(μSR)technology,future muon colliders,and neutrino factories.In this paper,we propose prompt μ^(+) acceleration in a nonlinear toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian(LG)laser pulse.An analytical model is described,which shows that a μ^(+) beam can be focused by an electron cylinder at the centerline of a toroidal bubble and accelerated by the front part of the longitudinal wakefield.A shaped LG laser with a short rise time can push plasma electrons,generating a higher-density electron sheath at the front of the bubble,which can enhance the acceleration field.The acceleration field driven by the shaped steep-rising-front LG laser pulse is about four times greater than that driven by a normal LG laser pulse.Our simulation results show that a 300 MeV μ^(+) bunch can be accelerated to 2 GeV and its transverse size is focused from an initial value of w_(0)=5μm to w=2μm in the toroidal bubble driven by the shaped steep-rising-front LG laser pulse with a normalized amplitude of a=22.
基金Project(2016YFB1100101)supported by the National Key Research and Development Program of China。
文摘Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.
文摘The Multi layer coating of Ni60 alloy was got by multi layer laser cladding. The height of the coating was about 12mm and the wall of the coating was perpendicular to the base. The microstructure of the coating was made up of fine dendrite. The conjunction between layers was good.
基金Project supported by the National Natural Science Foundation of China(Grant No.51675321)Shanghai Municipal Natural Science Foundation,China(Grant No.15ZR1415800)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.14ZZ092)
文摘A new controllable laser beam shaping technique is demonstrated, where a magnetic fluid-based liquid deformable mirror is proposed to redistribute the laser phase profile and thus change the propagation property of the beam. The mirror is driven by an inner miniature actuator array along with a large outer actuator. The inner actuator array is used for deforming the magnetic fluid surface, while the outer actuator is used to linearize the fluid surface response and amplify the magnitude of the deflection. In comparison to other laser beam shaping techniques, this technique offers the advantages such as simplicity, low cost, large shape deformation, and high adaptability. Based on a fabricated prototype of the liquid deformable mirror, an experimental AO system was set up to produce a desired conical surface shape that shaped the incident beam into a Bessel beam. The experimental results show the effectiveness of the proposed technique for laser beam shaping.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2017YFB1103900)National Natural Science Foundation of China(Grant No.11972084)+1 种基金National Science and Technology Major Project(2017-VI-0003-0073)Beijing National Science Foundation(1192014).
文摘In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process is established and the necessary assumptions are made.Then,the establishment process of the multi-physical field model of the melt pool is introduced in detail.It is concluded that the simulation model results are highly consistent with the online measurement experiment results in terms of melt pool profile,space temperature gradient,and time temperature gradient.Meanwhile,some parameters,such as the 3D morphology and surface fluid field of the melt pool,which are not obtained in the online measurement experiment,are analyzed.Finally,the influence of changing the scanning speed on the profile,peak temperature,and temperature gradient of the single-line melt pool is also analyzed,and the following conclusions are obtained:With the increase in scanning speed,the profile of the melt pool gradually becomes slender;The relationship between peak temperature and scanning speed is approximately linear in a certain speed range;The space temperature gradient at the tail of the melt pool under different scanning speeds hardly changes with the scanning speed,and the time temperature gradient at the tail of the melt pool is in direct proportion to the scanning speed.
基金supported by Hefei Advanced Light Facility R&D project and the National Natural Science Foundation of China (No.11775216)
文摘The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory(NSRL)is a diffraction-limited storage ring(DLSR),which plans to use a full energy linac as the injector.To ensure injection efficiency,the injection beam needs to have low emittance.Therefore,a photocathode radio frequency(RF)gun was developed in the HALF R&D project.The gun is designed to deliver high-quality electron bunches with a typically 0.5 nC charge and~4.5 MeV energy with low emittance.The initial system commission with an electron beam was completed at the end of 2020,and a stable 1.2–1.4 mm.mrad emittance with a bunch charge of 500 pC was demonstrated.In this paper,we report the experimental results and experience obtained during the commission,including the RF gun,drive laser system,and beam diagnostics.
文摘An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and
文摘In this paper, laser melting deposition(LMD), a new advanced manufacture technology. While manufacturing a metal part by LMD process, if we could control the energy distribution in internal different areas such as cladding layer or that between cladding layer and the substrate with optimal process parameters, the probability of internal defects of parts can be reduced, and the mechanical properties of parts will be greatly improved. To address the problem that whether the part made by LMD has internal defects, in this paper we designed the orthogonal rotation experiments through selecting different process parameters. Then a Logistic Regression model was built based on the experiments data. The calculation result of the regression model was in good agreement with the result of authentication test. Therefore, this Logistic Regression model has important reference for selecting LMD process parameters.
文摘We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring grooves.We also characterized the 3D beam pro¯le by using a crossshaped knife-edge fabricated on a silicon photo-detector.The size of the super-resolution dark spot in the tube is 0.32,which remains unchanged for4within the tube.This optical tube may¯nd applications in super-resolution microscopy,optical trapping and particle acceleration.
文摘An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse.A radiation source with a flattop temperature of about130 e V that lasted about 5 ns was obtained.The previous analytical iteration method based on power balance and self-similar solution of ablation was modified taking into account the plasma movements and it was used to design the laser pulse shape for experiment.A comparison between experimental results and simulation is presented and better agreement was achieved using the modified method.Further improvements are discussed.
文摘The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .
基金the National"863"Project under Grant No.Aosk003.
文摘A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.
文摘A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to a flat top beam profile with a uniform intensity distribution. A flat top beam with intensity variation of approx. 5% and flat top diameter to spot diameter ratio of 67% has been achieved. This device can also change the beam shape from a Gaussian to a donut by moving the observation plane. A flat top multimode fiber beam delivery is attractive for applications which require high power and uniform intensity distribution. In single mode fiber, concave tips could be used to reduce the beam spot size diameter, enabling efficient light coupling from a single mode fiber to an integrated optical waveguide.
基金Supported by the National Defence Foundation of China(No. A3520061304)
文摘The functionally gradient material laser rapid prototyping system is developed based on the increasing material manufacture idea of the rapid prototyping. The system hardware is composed of a 5 kW CO2 laser, a three-dimensional numeric control table, a three-stock-bin coaxial powder delivery device, and an integration operation control desk. The system software is composed of the CAD slicing and scan filling module, materials component distributing design module, and hardware equipment integration drive module. The real time change proportion allocation technique of three metal powders, powder uniform mixing technique, and coaxial powder delivery technique are studied. According to the principle of the output powder cumulative volume invariable in unit time, the real time powder allocation formulae are deduced. The design method of the materials component distributing regularity in the part entity is studied. The gradient change regularity of the face gradient, line gradient, and point gradient is studied. A sort of the file layout of integrating material information and geometry information is brought forward.
文摘We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. By creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass' lithography.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11474108, 61378036, 61307058, 11304101, 11074078)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320)+2 种基金the Scientific and Technological Innovation Project of Higher Education Institute, Guangdong, China (Grant No. 2013KJCX0051)the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholarthe Zhujiang New-star Plan of Science & Technology in Guangzhou City (Grant No. 2014J2200008)
文摘Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.
基金supported by the Australian Research Council’s Projects Funding Scheme (No. DP110101653)the European Commission (BioTiNet-ITN G.A. No.264635)the Deutsche Forschungsgemeinschaft (SFB/Transregio 79, Project M1)
文摘This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in situ Ti-TiB composite materials produced by selective laser melting (SLM) technology. Starting powder composite system was prepared by mixing 95 wt% commercially pure titanium (CP-Ti) and 5 wt% titanium diboride (TiB2) powders and subsequently milled for two different times (i.e. 2 h and 4 h). The milled powder mixtures after 2 h and 4 h show nearly spherical and irregular shape, respectively. Subsequently, the resultant Ti-5 wt% TiB2 powder mixtures were used for SLM processing. Scanning electron microscopy image of the SLM-processed Ti-TiB composite samples show needle-shape TiB phase distributed across the Ti matrix, which is the product of an in-situ chemical reaction between Ti and TiB2 during SLM. The Ti-TiB composite samples prepared from 2 h and 4 h milled Ti-TiB2 powders show different relative densities of 99.5% and 95.1%, respectively. Also, the compression properties such as ultimate strength and compression strain for the 99.5% dense composite samples is 1421 MPa and 17.8%, respectively, which are superior to those (883 MPa and 5.5%, respectively) for the 95.1% dense sample. The results indicate that once Ti and TiB2 powders are connected firmly to each other and powder mixture of nearly spherical shape is obtained, there is no additional benefit in increasing the milling time and, instead, it has a negative effect on the density (i.e. increasing porosity level) of the Ti-TiB composite materials and their mechanical properties.
文摘The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm·mrad to 3.66 πmm·mrad.
文摘SwissFEL is a compact,high-brilliance,soft and hard X-ray free electron laser(FEL)facility that started user operation in 2019.The facility is composed of two parallel beam lines seeded by a common linear accelerator(LINAC),and a two-bunch photo-injector.For the injector,an innovative dual-photocathode laser scheme has been developed based on state-of-the-art ytterbium femtosecond laser systems.In this paper,we describe the performance of the Swiss FEL photocathode drive lasers(PCDLs),the pulse-shaping capabilities as well as the versatility of the systems,which allow many different modes of operation of Swiss FEL.The full control over the Swiss FEL electron bunch properties via the unique architecture of the PCDLs will enable in the future the advent of more-advanced FEL modes;these modes include,but are not restricted to,the generation of single or trains of sub-femtosecond FEL pulses,multi-color FEL and finally,the generation of fully coherent X-ray pulses via laser-based seeding.
基金supported by the Higher Education Commission(HEC)of Pakistan
文摘Application of a thermal source in non-contact forming of sheet metal is known for some time. Replacement of this thermal source with a laser beam promises the much greater controllability of the process. To date, research focuses on dealing with rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. This study presents the work to get the dish or bowl shape by an initially flat circular plate. Two different scanning strategies circular and radial are attempted to get the desired dish shape. Following the unexpected distortion throughout the plate, a second series of experiments are conducted on a wide range of specimen geometries. An interesting phenomenon is observed. It is suggested that homogeneous dissemination of heat along with combined form of both of the scanning strategies, could have more potential to form dome shape.