In the design of filter shaping circuits for nuclear pulse signals,inverting filter shaping circuits perform better than non-inverting filter shaping circuits.Because these circuits facilitate changing the phase of a ...In the design of filter shaping circuits for nuclear pulse signals,inverting filter shaping circuits perform better than non-inverting filter shaping circuits.Because these circuits facilitate changing the phase of a pulse signal,they are widely used in processing nuclear pulse signals.In this study,the transfer functions of four types of inverting filter shaping circuits,namely the common inverting filter shaping,improved inverting filter shaping,multiple feedback low-pass filter shaping,and third-order multiple feedback low-pass filter shaping,in the Laplacian domain,are derived.We establish the numerical recursive function models and digitalize the four circuits,obtain the transfer functions in the Z domain,and analyze the filter performance and amplitude-frequency response characteristics in the frequency domain.Based on the actual nuclear pulse signal of the Si-PIN detector,we realize four types of inverting digital shaping.The results show that under the same shaping parameters,the common inverting digital shaping has better amplitude extraction characteristics,the third-order multiple feedback low-pass digital shaping has better noise suppression performance,and the multiple feedback digital shaping takes into account both pulse amplitude extraction and noise suppression performance.展开更多
The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e...The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability of the PSD inverse calculation.展开更多
Two new kinds of ultra-narrow trigger frequency alterable picosecond pulse generator are presented.One can produce positive pulses and the other can produce negative pulses.The two pulse generators are subdivided into...Two new kinds of ultra-narrow trigger frequency alterable picosecond pulse generator are presented.One can produce positive pulses and the other can produce negative pulses.The two pulse generators are subdivided into three parts:signal driving circuit,differentiator network and pulse shaping circuit.The pulse shaping circuit is made of step recovery diode(SRD) and short-circuit microstrip line.A positive pulse with width of 54 ps(50%-50%),rising time of 30 ps(10%-90%) and falling time of 32 ps(90%-10%),and a negative pulse with width of 54 ps(50%-50%),rising time of 30 ps(90%-10%) and falling time of 30 ps(10%-90%) are achieved in simulation.All of the components are ready-made and inexpensive.They can be applied in ultra-wideband(UWB) communication system,such as transmitters and receivers.展开更多
A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear SchrSdinger equation. The fiber cavity with a NALM has a tendency to provide pulse ...A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear SchrSdinger equation. The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM, and the nanosecond square pulse is generated by the pulse shaping effect. The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately. The generated square pulses have fiat top and no internal structure.展开更多
基金supported by the National Key R&D Project(No.2017YFF0106503)National Natural Science Foundation of China(Nos.11665001 and 41864007)。
文摘In the design of filter shaping circuits for nuclear pulse signals,inverting filter shaping circuits perform better than non-inverting filter shaping circuits.Because these circuits facilitate changing the phase of a pulse signal,they are widely used in processing nuclear pulse signals.In this study,the transfer functions of four types of inverting filter shaping circuits,namely the common inverting filter shaping,improved inverting filter shaping,multiple feedback low-pass filter shaping,and third-order multiple feedback low-pass filter shaping,in the Laplacian domain,are derived.We establish the numerical recursive function models and digitalize the four circuits,obtain the transfer functions in the Z domain,and analyze the filter performance and amplitude-frequency response characteristics in the frequency domain.Based on the actual nuclear pulse signal of the Si-PIN detector,we realize four types of inverting digital shaping.The results show that under the same shaping parameters,the common inverting digital shaping has better amplitude extraction characteristics,the third-order multiple feedback low-pass digital shaping has better noise suppression performance,and the multiple feedback digital shaping takes into account both pulse amplitude extraction and noise suppression performance.
基金the National Natural Sci-ence Foundation of China (No.50576019)the Pro-gram for New Century Excellent Talents in University from the Ministry of Education of China.
文摘The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability of the PSD inverse calculation.
基金the National Natural Science Foundation of China (No.60970058)the Natural Science Foundation of Jiangsu Province (No.SBK200930425)+1 种基金the fund of the State Key Laboratory of Millimetre Waves of Southeast Universitythe Student Research Training Program (SRTP) of Southeast University
文摘Two new kinds of ultra-narrow trigger frequency alterable picosecond pulse generator are presented.One can produce positive pulses and the other can produce negative pulses.The two pulse generators are subdivided into three parts:signal driving circuit,differentiator network and pulse shaping circuit.The pulse shaping circuit is made of step recovery diode(SRD) and short-circuit microstrip line.A positive pulse with width of 54 ps(50%-50%),rising time of 30 ps(10%-90%) and falling time of 32 ps(90%-10%),and a negative pulse with width of 54 ps(50%-50%),rising time of 30 ps(90%-10%) and falling time of 30 ps(10%-90%) are achieved in simulation.All of the components are ready-made and inexpensive.They can be applied in ultra-wideband(UWB) communication system,such as transmitters and receivers.
文摘A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear SchrSdinger equation. The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM, and the nanosecond square pulse is generated by the pulse shaping effect. The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately. The generated square pulses have fiat top and no internal structure.