With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Research on compact manufacturing technology for shape and performance controllability of metallic components can reanze the simplification and high-reliability of manufacturing process on the premise of satisfying th...Research on compact manufacturing technology for shape and performance controllability of metallic components can reanze the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for fin'ther development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.展开更多
In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cav...In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cavitation elements are nonlinearly disposed based on the Green formula and perturbation potential panel method. At the same time, the method that combines cavity shape for fixed cavity length (CSCL) iteration and cavity shape for fixed cavitation number (CSCN) iteration is used to work out the thickness and length of hydrofoil cavitations. Through analysis of calculation results, it can be concluded that the jump of pressure and velocity potentially exist between cavitation end area and non-cavitations area on suction surface when cavitation occurs on hydrofoil. In certain angles of attack, the cavitation number has a negative impact on the length of cavitations. And under the same angle of attack and cavitation number, the bigger the thickness of the hydrofoil, the shorter the cavitations length.展开更多
To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guid...To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guidance lawconsidering a first-order autopilot lag( ETSG L-C FAL) was proposed. To derive the ETSG L-C FAL,a time-to-go- nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated.The performance of the ETSG L-C FAL and the ETSG L guidance laws was compared through simulation.Simulation results showthat although a first-order autopilot is introduced into the ETSG L-C FAL guidance system,the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.展开更多
With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing facto...With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing factors, human unsafe behavior stands out as a primary cause for these incidents. This study aims to assess the human reliability of tower crane operations on smart construction sites. To proactively enhance safety measures, the research employs text mining techniques (TF-IDF-Truncated SVD-Complement NB) to identify patterns of human errors among tower crane operators. Building upon the SHEL model, the study categorizes behavioral factors affecting human reliability in the man-machine interface, leading to the establishment of the Performance Shaping Factors (PSFs) system. Furthermore, the research constructs an error impact indicator system for the intelligent construction site tower crane operator interface. Using the DEMATEL method, it analyzes the significance of various factors influencing human errors in tower crane operations. Additionally, the ISM-MICMAC method is applied to unveil the hierarchical relationships and driving-dependent connections among these influencing factors. The findings indicate that personal state, operating procedures, and physical environment directly impact human errors, while personal capability, technological environment, and one fundamental organizational management factor contribute indirectly. .展开更多
Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry fe...Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.展开更多
A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is cl...A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.展开更多
A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily b...A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.展开更多
With practical interest in the future applications of next-generation electronic devices,it is imperative to develop new conductive interconnecting materials appropriate for modern electronic devices to replace tradit...With practical interest in the future applications of next-generation electronic devices,it is imperative to develop new conductive interconnecting materials appropriate for modern electronic devices to replace traditional rigid solder tin and silver paste of high melting temperature or corrosive solvent requirements.Herein,we design highly stretchable shape memory self-soldering conductive(SMSC)tape with reversible adhesion switched by temperature,which is composed of silver particles encapsulated by shape memory polymer.SMSC tape has perfect shape and conductivity memory property and anti-fatigue ability even under the strain of 90%.It also exhibits an initial conductivity of 2772 S cm^(−1) and a maximum tensile strain of~100%.The maximum conductivity could be increased to 5446 S cm^(−1) by decreasing the strain to 17%.Meanwhile,SMSC tape can easily realize a heating induced reversible strong-to-weak adhe-sion transition for self-soldering circuit.The combination of stable conductivity,excellent shape memory performance,and temperature-switching reversible adhesion enables SMSC tape to serve two functions of electrode and solder simultaneously.This provides a new way for conductive interconnecting materials to meet requirements of modern electronic devices in the future.展开更多
As a virtual representation of a specific physical asset,the digital twin has great potential for realizing the life cycle maintenance management of a dynamic system.Nevertheless,the dynamic stress concentration is ge...As a virtual representation of a specific physical asset,the digital twin has great potential for realizing the life cycle maintenance management of a dynamic system.Nevertheless,the dynamic stress concentration is generated since the state of the dynamic system changes over time.This generation of dynamic stress concentration has hindered the exploitation of the digital twin to reflect the dynamic behaviors of systems in practical engineering applications.In this context,this paper is interested in achieving real-time performance prediction of dynamic systems by developing a new digital twin framework that includes simulation data,measuring data,multi-level fusion modeling(M-LFM),visualization techniques,and fatigue analysis.To leverage its capacity,the M-LFM method combines the advantages of different surrogate models and integrates simulation and measured data,which can improve the prediction accuracy of dynamic stress concentration.A telescopic boom crane is used as an example to verify the proposed framework for stress prediction and fatigue analysis of the complex dynamic system.The results show that the M-LFM method has better performance in the computational efficiency and calculation accuracy of the stress prediction compared with the polynomial response surface method and the kriging method.In other words,the proposed framework can leverage the advantages of digital twins in a dynamic system:damage monitoring,safety assessment,and other aspects and then promote the development of digital twins in industrial fields.展开更多
Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner lay...Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner layer and W outer layer. The penetration properties of A and B SCLs were researched. The results show that the two SCLs can form continuous jet and the tip velocities of A and B jets are 7.4 and 6.3 km s^(-1), respectively. The kinetic energy density(5.3 9 1011 J m-3) of A jet tip increases by 194.4 %compared with that(1.8 9 1011 J m-3) of B jet tip. B jet,however, exhibits deeper penetration depth at the same experimental conditions. The chemical component and microstructure of the area nearby the ballistic perforation were researched. Component analysis shows that both the jets are formed only from inner layer metal. Microstructure analysis shows that martensite and intermetallic form around ballistic perforation penetrated by A SCL due to the intensive interaction between W jet and steel target. The two kinds of newly formed ultrahard phases also hinder the jet from penetrating target further. As a result of relatively alleviative interaction between Cu jet and target, only solid solution rather than ultrahard phases forms around ballistic perforation penetrated by B SCL.展开更多
Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex ...Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.展开更多
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675361,51575371)Key Program of National Natural Science Foundation of China(Grant No.51135007)Key Research Project of Shanxi Province(Grant No.03012015004)
文摘Research on compact manufacturing technology for shape and performance controllability of metallic components can reanze the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for fin'ther development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.
基金Supported by the National Natural Science Foundation of China (Grant No. 41176074) China Postdoctoral Science Foundation (Grant No.2012M512133) Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20102304120026)
文摘In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cavitation elements are nonlinearly disposed based on the Green formula and perturbation potential panel method. At the same time, the method that combines cavity shape for fixed cavity length (CSCL) iteration and cavity shape for fixed cavitation number (CSCN) iteration is used to work out the thickness and length of hydrofoil cavitations. Through analysis of calculation results, it can be concluded that the jump of pressure and velocity potentially exist between cavitation end area and non-cavitations area on suction surface when cavitation occurs on hydrofoil. In certain angles of attack, the cavitation number has a negative impact on the length of cavitations. And under the same angle of attack and cavitation number, the bigger the thickness of the hydrofoil, the shorter the cavitations length.
基金Supported by the National Natural Science Foundation of China(61172182)
文摘To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guidance lawconsidering a first-order autopilot lag( ETSG L-C FAL) was proposed. To derive the ETSG L-C FAL,a time-to-go- nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated.The performance of the ETSG L-C FAL and the ETSG L guidance laws was compared through simulation.Simulation results showthat although a first-order autopilot is introduced into the ETSG L-C FAL guidance system,the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.
文摘With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing factors, human unsafe behavior stands out as a primary cause for these incidents. This study aims to assess the human reliability of tower crane operations on smart construction sites. To proactively enhance safety measures, the research employs text mining techniques (TF-IDF-Truncated SVD-Complement NB) to identify patterns of human errors among tower crane operators. Building upon the SHEL model, the study categorizes behavioral factors affecting human reliability in the man-machine interface, leading to the establishment of the Performance Shaping Factors (PSFs) system. Furthermore, the research constructs an error impact indicator system for the intelligent construction site tower crane operator interface. Using the DEMATEL method, it analyzes the significance of various factors influencing human errors in tower crane operations. Additionally, the ISM-MICMAC method is applied to unveil the hierarchical relationships and driving-dependent connections among these influencing factors. The findings indicate that personal state, operating procedures, and physical environment directly impact human errors, while personal capability, technological environment, and one fundamental organizational management factor contribute indirectly. .
基金financially supported by National Key R&D Program of China(No.2020YFC1107103)Key Research and Development Program of Zhejiang Province(No.2021C01107)+1 种基金China Postdoctoral Science Foundation(No.2020M681846)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51821093).
文摘Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.
文摘A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.
基金Supported by the Ministry of Science and Technology of China(No.2009CB623503)
文摘A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.
基金This work is supported by National Key R&D Program of China(Grant No.2020YFA0711500)the National Natural Science Fund of China(51973095&52011540401).
文摘With practical interest in the future applications of next-generation electronic devices,it is imperative to develop new conductive interconnecting materials appropriate for modern electronic devices to replace traditional rigid solder tin and silver paste of high melting temperature or corrosive solvent requirements.Herein,we design highly stretchable shape memory self-soldering conductive(SMSC)tape with reversible adhesion switched by temperature,which is composed of silver particles encapsulated by shape memory polymer.SMSC tape has perfect shape and conductivity memory property and anti-fatigue ability even under the strain of 90%.It also exhibits an initial conductivity of 2772 S cm^(−1) and a maximum tensile strain of~100%.The maximum conductivity could be increased to 5446 S cm^(−1) by decreasing the strain to 17%.Meanwhile,SMSC tape can easily realize a heating induced reversible strong-to-weak adhe-sion transition for self-soldering circuit.The combination of stable conductivity,excellent shape memory performance,and temperature-switching reversible adhesion enables SMSC tape to serve two functions of electrode and solder simultaneously.This provides a new way for conductive interconnecting materials to meet requirements of modern electronic devices in the future.
基金supported by the National Key R&D Program of China(Grant No.2018YFB1700704)the National Natural Science Foundation of China(Grant No.52075068).
文摘As a virtual representation of a specific physical asset,the digital twin has great potential for realizing the life cycle maintenance management of a dynamic system.Nevertheless,the dynamic stress concentration is generated since the state of the dynamic system changes over time.This generation of dynamic stress concentration has hindered the exploitation of the digital twin to reflect the dynamic behaviors of systems in practical engineering applications.In this context,this paper is interested in achieving real-time performance prediction of dynamic systems by developing a new digital twin framework that includes simulation data,measuring data,multi-level fusion modeling(M-LFM),visualization techniques,and fatigue analysis.To leverage its capacity,the M-LFM method combines the advantages of different surrogate models and integrates simulation and measured data,which can improve the prediction accuracy of dynamic stress concentration.A telescopic boom crane is used as an example to verify the proposed framework for stress prediction and fatigue analysis of the complex dynamic system.The results show that the M-LFM method has better performance in the computational efficiency and calculation accuracy of the stress prediction compared with the polynomial response surface method and the kriging method.In other words,the proposed framework can leverage the advantages of digital twins in a dynamic system:damage monitoring,safety assessment,and other aspects and then promote the development of digital twins in industrial fields.
基金financially supported by the National Natural Science Foundation of China(No.51201013)
文摘Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner layer and W outer layer. The penetration properties of A and B SCLs were researched. The results show that the two SCLs can form continuous jet and the tip velocities of A and B jets are 7.4 and 6.3 km s^(-1), respectively. The kinetic energy density(5.3 9 1011 J m-3) of A jet tip increases by 194.4 %compared with that(1.8 9 1011 J m-3) of B jet tip. B jet,however, exhibits deeper penetration depth at the same experimental conditions. The chemical component and microstructure of the area nearby the ballistic perforation were researched. Component analysis shows that both the jets are formed only from inner layer metal. Microstructure analysis shows that martensite and intermetallic form around ballistic perforation penetrated by A SCL due to the intensive interaction between W jet and steel target. The two kinds of newly formed ultrahard phases also hinder the jet from penetrating target further. As a result of relatively alleviative interaction between Cu jet and target, only solid solution rather than ultrahard phases forms around ballistic perforation penetrated by B SCL.
基金supported by the National Natural Science Foundation of China(Nos.51921003,92160301,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001)Natural Science Foundation of Jiangsu Province(No.BK20210295).
文摘Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.