In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, th...In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, then f(z) = ce 1 nz, where c is a nonzero constant. This result extends Lv's result from the case of polynomial to small entire function.展开更多
改进Heittokangas等最近获得的涉及亚纯函数与其平移函数唯一性的一个结果[J.Heit-tokangas,R.Korhonen,I.Laine,J.Rieppo and J.Zhang,Value sharing results for shifts of mero-morphic function and sufficient conditions for peri...改进Heittokangas等最近获得的涉及亚纯函数与其平移函数唯一性的一个结果[J.Heit-tokangas,R.Korhonen,I.Laine,J.Rieppo and J.Zhang,Value sharing results for shifts of mero-morphic function and sufficient conditions for periodicity,J.Math.Anal.Appl.,355(2009):352-363].展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.2011QNA25)National Natural Science Foundation of China(Grant No.11271179)
文摘In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, then f(z) = ce 1 nz, where c is a nonzero constant. This result extends Lv's result from the case of polynomial to small entire function.
文摘改进Heittokangas等最近获得的涉及亚纯函数与其平移函数唯一性的一个结果[J.Heit-tokangas,R.Korhonen,I.Laine,J.Rieppo and J.Zhang,Value sharing results for shifts of mero-morphic function and sufficient conditions for periodicity,J.Math.Anal.Appl.,355(2009):352-363].
基金partly supported by the NSF(11271090,11171184,11001057)the Tianyuan Youth Fund of the NSF of China(11326083)+4 种基金Shanghai University Young Teacher Training Program(ZZSDJ12020)Innovation Progrom of Shanghai Municipal Education Commission(14YZ164)the NSF of Guangdong Province(S2012010010121)Projects13XKJ01 from the Leading Academic Discipline Project of Shanghai Dianji Universitythe Visiting Scholar Program of Department of Mathematics and Statistics at Curtin University of Technology