This letter presents a k-party RSA key sharing scheme and the related algorithms are presented. It is shown that the shared key can be generated in such a collaborative way that the RSA modulus is publicly known but n...This letter presents a k-party RSA key sharing scheme and the related algorithms are presented. It is shown that the shared key can be generated in such a collaborative way that the RSA modulus is publicly known but none of the parties is able to decrypt the enciphered message individually.展开更多
We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-pho...We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.展开更多
Based on the latest research findings of 3GPP on network sharing, this paper introduces 4 solutions to WCDMA 3G network sharing: site sharing, common network sharing, geographically split network sharing, and radio ac...Based on the latest research findings of 3GPP on network sharing, this paper introduces 4 solutions to WCDMA 3G network sharing: site sharing, common network sharing, geographically split network sharing, and radio access network sharing. It also analyzes the key network sharing technologies, including the lu-Flex function in Release 5, the UTRAN sharing mechanism in the connected mode in Release 5 and the mechanism of network sharing support enhancement in Release 6.展开更多
The vast revolution in networking is increasing rapidly along with tech-nology advancements,which requires more effort from all cyberspace profes-sionals to cope with the challenges that come with advanced technology ...The vast revolution in networking is increasing rapidly along with tech-nology advancements,which requires more effort from all cyberspace profes-sionals to cope with the challenges that come with advanced technology privileges and services.Hence,Cognitive Radio Network is one of the promising approaches that permit a dynamic type of smart network for improving the utili-zation of idle spectrum portions of wireless communications.However,it is vul-nerable to security threats and attacks and demands security mechanisms to preserve and protect the cognitive radio networks for ensuring a secure commu-nication environment.This paper presents an effective secure MAC protocol for cognitive radio networks,significantly enhancing the security level of the existing DSMCRN and SSMCRN protocols by eliminating the authentication server’s necessity,which can be a single point of failure to compromise the entire network communication.The proposed protocol has proven to be effective and reliable since it does not rely on a centralized entity for providing the required security for a single pair of cognitive users.The protocol also improves the performance in the context of fast switching to data channels leading to higher throughput is achieved compared to the benchmark protocols.展开更多
The future Wireless Cloud Networks (WCNs) are required to satisfy both extremely high levels of service resilience and security assurance (i.e., Blue criteria) by overproviding backup network resources and cryptograph...The future Wireless Cloud Networks (WCNs) are required to satisfy both extremely high levels of service resilience and security assurance (i.e., Blue criteria) by overproviding backup network resources and cryptographic protection on wireless communication respectively, as well as minimizing energy consumption (i.e., Green criteria) by switching off unnecessary resources as much as possible. There is a contradiction to satisfy both Blue and Green design criteria simultaneously. In this paper, we propose a new BlueGreen topological control scheme to leverage the wireless link connectivity for WCNs using an adaptive encryption key allocation mechanism, named as Shared Backup Path Keys (SBPK). The BlueGreen SBPK can take into account the network dependable requirements such as service resilience, security assurance and energy efficiency as a whole, so as trading off between them to find an optimal solution. Actually, this challenging problem can be modeled as a global optimization problem, where the network working and backup elements such as nodes, links, encryption keys and their energy consumption are considered as a resource, and their utilization should be minimized. The case studies confirm that there is a trade-off optimal solution between the capacity efficiency and energy efficiency to achieve the dependable WCNs.展开更多
基金Supported by the National Natural Science Foundation of China (No.69825102)
文摘This letter presents a k-party RSA key sharing scheme and the related algorithms are presented. It is shown that the shared key can be generated in such a collaborative way that the RSA modulus is publicly known but none of the parties is able to decrypt the enciphered message individually.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063. We are very grateful to Prof. ZHANG Zhan-Jun for his detailed instructions and help.
文摘We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.
文摘Based on the latest research findings of 3GPP on network sharing, this paper introduces 4 solutions to WCDMA 3G network sharing: site sharing, common network sharing, geographically split network sharing, and radio access network sharing. It also analyzes the key network sharing technologies, including the lu-Flex function in Release 5, the UTRAN sharing mechanism in the connected mode in Release 5 and the mechanism of network sharing support enhancement in Release 6.
基金Supporting Project(TURSP),Taif University,Kingdom of Saudi Arabia under the Grant Number:TURSP-2020/107.
文摘The vast revolution in networking is increasing rapidly along with tech-nology advancements,which requires more effort from all cyberspace profes-sionals to cope with the challenges that come with advanced technology privileges and services.Hence,Cognitive Radio Network is one of the promising approaches that permit a dynamic type of smart network for improving the utili-zation of idle spectrum portions of wireless communications.However,it is vul-nerable to security threats and attacks and demands security mechanisms to preserve and protect the cognitive radio networks for ensuring a secure commu-nication environment.This paper presents an effective secure MAC protocol for cognitive radio networks,significantly enhancing the security level of the existing DSMCRN and SSMCRN protocols by eliminating the authentication server’s necessity,which can be a single point of failure to compromise the entire network communication.The proposed protocol has proven to be effective and reliable since it does not rely on a centralized entity for providing the required security for a single pair of cognitive users.The protocol also improves the performance in the context of fast switching to data channels leading to higher throughput is achieved compared to the benchmark protocols.
文摘The future Wireless Cloud Networks (WCNs) are required to satisfy both extremely high levels of service resilience and security assurance (i.e., Blue criteria) by overproviding backup network resources and cryptographic protection on wireless communication respectively, as well as minimizing energy consumption (i.e., Green criteria) by switching off unnecessary resources as much as possible. There is a contradiction to satisfy both Blue and Green design criteria simultaneously. In this paper, we propose a new BlueGreen topological control scheme to leverage the wireless link connectivity for WCNs using an adaptive encryption key allocation mechanism, named as Shared Backup Path Keys (SBPK). The BlueGreen SBPK can take into account the network dependable requirements such as service resilience, security assurance and energy efficiency as a whole, so as trading off between them to find an optimal solution. Actually, this challenging problem can be modeled as a global optimization problem, where the network working and backup elements such as nodes, links, encryption keys and their energy consumption are considered as a resource, and their utilization should be minimized. The case studies confirm that there is a trade-off optimal solution between the capacity efficiency and energy efficiency to achieve the dependable WCNs.