Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, w...Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.展开更多
Users store vast amounts of sensitive data on a big data platform. Sharing sensitive data will help enterprises reduce the cost of providing users with personalized services and provide value-added data services.Howev...Users store vast amounts of sensitive data on a big data platform. Sharing sensitive data will help enterprises reduce the cost of providing users with personalized services and provide value-added data services.However, secure data sharing is problematic. This paper proposes a framework for secure sensitive data sharing on a big data platform, including secure data delivery, storage, usage, and destruction on a semi-trusted big data sharing platform. We present a proxy re-encryption algorithm based on heterogeneous ciphertext transformation and a user process protection method based on a virtual machine monitor, which provides support for the realization of system functions. The framework protects the security of users' sensitive data effectively and shares these data safely. At the same time, data owners retain complete control of their own data in a sound environment for modern Internet information security.展开更多
文摘Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.
基金supported by the National Natural Science Foundation of China (Nos. 61173170, 61300222, 61433006, and U1401258)Independent Innovation Fund of Huazhong University of Science and Technology (Nos. 2012TS052, 2012TS053, 2013QN120, and CXY13Q019)
文摘Users store vast amounts of sensitive data on a big data platform. Sharing sensitive data will help enterprises reduce the cost of providing users with personalized services and provide value-added data services.However, secure data sharing is problematic. This paper proposes a framework for secure sensitive data sharing on a big data platform, including secure data delivery, storage, usage, and destruction on a semi-trusted big data sharing platform. We present a proxy re-encryption algorithm based on heterogeneous ciphertext transformation and a user process protection method based on a virtual machine monitor, which provides support for the realization of system functions. The framework protects the security of users' sensitive data effectively and shares these data safely. At the same time, data owners retain complete control of their own data in a sound environment for modern Internet information security.