For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all...For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.展开更多
The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive st...The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive structure for measuring the worth of data elements,hindering effective navigation of the changing digital environment.This paper aims to fill this research gap by introducing the innovative concept of“data components.”It proposes a graphtheoretic representation model that presents a clear mathematical definition and demonstrates the superiority of data components over traditional processing methods.Additionally,the paper introduces an information measurement model that provides a way to calculate the information entropy of data components and establish their increased informational value.The paper also assesses the value of information,suggesting a pricing mechanism based on its significance.In conclusion,this paper establishes a robust framework for understanding and quantifying the value of implicit information in data,laying the groundwork for future research and practical applications.展开更多
Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The m...Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The main challenge at this stage is to integrate the blockchain from the resourceconstrained Io T devices and ensure the data of Io T system is credible. We provide a general framework for intelligent Io T data acquisition and sharing in an untrusted environment based on the blockchain, where gateways become Oracles. A distributed Oracle network based on Byzantine Fault Tolerant algorithm is used to provide trusted data for the blockchain to make intelligent Io T data trustworthy. An aggregation contract is deployed to collect data from various Oracle and share the credible data to all on-chain users. We also propose a gateway data aggregation scheme based on the REST API event publishing/subscribing mechanism which uses SQL to achieve flexible data aggregation. The experimental results show that the proposed scheme can alleviate the problem of limited performance of Io T equipment, make data reliable, and meet the diverse data needs on the chain.展开更多
This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering...This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.展开更多
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct...This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation.展开更多
Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by d...Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.展开更多
In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among th...The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.展开更多
In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,...In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.展开更多
The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming su...The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center.展开更多
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac...This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.展开更多
In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the trainin...In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.展开更多
With the advancements in the era of artificial intelligence,blockchain,cloud computing,and big data,there is a need for secure,decentralized medical record storage and retrieval systems.While cloud storage solves stor...With the advancements in the era of artificial intelligence,blockchain,cloud computing,and big data,there is a need for secure,decentralized medical record storage and retrieval systems.While cloud storage solves storage issues,it is challenging to realize secure sharing of records over the network.Medi-block record in the healthcare system has brought a new digitalization method for patients’medical records.This centralized technology provides a symmetrical process between the hospital and doctors when patients urgently need to go to a different or nearby hospital.It enables electronic medical records to be available with the correct authentication and restricts access to medical data retrieval.Medi-block record is the consumer-centered healthcare data system that brings reliable and transparent datasets for the medical record.This study presents an extensive review of proposed solutions aiming to protect the privacy and integrity of medical data by securing data sharing for Medi-block records.It also aims to propose a comprehensive investigation of the recent advances in different methods of securing data sharing,such as using Blockchain technology,Access Control,Privacy-Preserving,Proxy Re-Encryption,and Service-On-Chain approach.Finally,we highlight the open issues and identify the challenges regarding secure data sharing for Medi-block records in the healthcare systems.展开更多
Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,storing,and synchronizing energy metering data.Access and sharing limitations are stringent for user...Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,storing,and synchronizing energy metering data.Access and sharing limitations are stringent for users,power companies,and researchers,demanding significant resources and time for permissions and verification.This paper proposes a blockchain-based architecture for secure and efficient sharing of electric energy metering data.Further,we propose a data sharing model based on evolutionary game theory.Based on the Lyapunov stability theory,the model’s evolutionary stable strategy(ESS)is analyzed.Numerical results verify the correctness and practicability of the scheme proposed in this paper,and provide a new method for realizing convenient,safe and fast data sharing.展开更多
In the past decade,online Peer-to-Peer(P2P)lending platforms have transformed the lending industry,which has been historically dominated by commercial banks.Information technology breakthroughs such as big data-based ...In the past decade,online Peer-to-Peer(P2P)lending platforms have transformed the lending industry,which has been historically dominated by commercial banks.Information technology breakthroughs such as big data-based financial technologies(Fintech)have been identified as important disruptive driving forces for this paradigm shift.In this paper,we take an information economics perspective to investigate how big data affects the transformation of the lending industry.By identifying how signaling and search costs are reduced by big data analytics for credit risk management of P2P lending,we discuss how information asymmetry is reduced in the big data era.Rooted in the lending business,we propose a theory on the economics of big data and outline a number of research opportunities and challenging issues.展开更多
Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings ...Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings not only convenience to people's daily life and more opportunities to enterprises, but more challenges with information security as well. This paper has a research on new types and features of information security issues in the age of big data, and puts forward the solutions for the above issues: build up the big data security management platform, set up the establishment of information security system and implement relevant laws and regulations.展开更多
The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upo...The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upon blockchain have been explored recently for Internet of Things(IoTs).However,the access from a legitimate user may be denied without the pre-defined policy and data update on the blockchain could be costly to the owners.In this paper,we first address these issues by incorporating the Accountable Subgroup Multi-Signature(ASM)algorithm into the Attribute-based Access Control(ABAC)method with Policy Smart Contract,to provide a finegrained and flexible solution.Next,we propose a policy-based Chameleon Hash algorithm that allows the data to be updated in a reliable and convenient way by the authorized users.Finally,we evaluate our work by comparing its performance with the benchmarks.The results demonstrate significant improvement on the effectiveness and efficiency.展开更多
This paper proposes a scheme to obtain location and vital health information using ZigBee system. ZigBee systems are wireless communication systems defined by IEEE 802.154. In the proposed scheme, location information...This paper proposes a scheme to obtain location and vital health information using ZigBee system. ZigBee systems are wireless communication systems defined by IEEE 802.154. In the proposed scheme, location information is obtained using the Link Quality Indication (LQI) function of a ZigBee system, which represents the received signal strength. And, the vital health information are collected from the electrocardiogram monitor, the pulse and blood pressure device, attached to the patient’s body. This information is then transmitted to an outside network by ZigBee systems. In this way, vital health information can be transmitted as ZigBee sensor data while patients with the ZigBee terminal are moving. In the experiments using actual ZigBee devices, the proposed scheme could obtain accurate location and vital health information from the sensor data. Moreover, to achieve high reliability in the actual service, the collected amount of sensor data was confirmed by the theoretic calculation, when a ZigBee terminal passed through ZigBee routers. These results indicate that the proposed scheme can be used to detect the accurate location of the ZigBee terminal. And over 99% of the sensor data on vital health information was obtained when the ZigBee terminal passed through approximately four ZigBee routers.展开更多
Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, w...Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.展开更多
基金partially supported by the National Natural Science Foundation of China under grant no.62372245the Foundation of Yunnan Key Laboratory of Blockchain Application Technology under Grant 202105AG070005+1 种基金in part by the Foundation of State Key Laboratory of Public Big Datain part by the Foundation of Key Laboratory of Computational Science and Application of Hainan Province under Grant JSKX202202。
文摘For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.
基金supported by the EU H2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Project-DEEP,Grant number:101109045)National Key R&D Program of China with Grant number 2018YFB1800804+2 种基金the National Natural Science Foundation of China(Nos.NSFC 61925105,and 62171257)Tsinghua University-China Mobile Communications Group Co.,Ltd,Joint Institutethe Fundamental Research Funds for the Central Universities,China(No.FRF-NP-20-03)。
文摘The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive structure for measuring the worth of data elements,hindering effective navigation of the changing digital environment.This paper aims to fill this research gap by introducing the innovative concept of“data components.”It proposes a graphtheoretic representation model that presents a clear mathematical definition and demonstrates the superiority of data components over traditional processing methods.Additionally,the paper introduces an information measurement model that provides a way to calculate the information entropy of data components and establish their increased informational value.The paper also assesses the value of information,suggesting a pricing mechanism based on its significance.In conclusion,this paper establishes a robust framework for understanding and quantifying the value of implicit information in data,laying the groundwork for future research and practical applications.
基金supported by the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications),Ministry of Education(No.JZNY202114)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX210734).
文摘Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The main challenge at this stage is to integrate the blockchain from the resourceconstrained Io T devices and ensure the data of Io T system is credible. We provide a general framework for intelligent Io T data acquisition and sharing in an untrusted environment based on the blockchain, where gateways become Oracles. A distributed Oracle network based on Byzantine Fault Tolerant algorithm is used to provide trusted data for the blockchain to make intelligent Io T data trustworthy. An aggregation contract is deployed to collect data from various Oracle and share the credible data to all on-chain users. We also propose a gateway data aggregation scheme based on the REST API event publishing/subscribing mechanism which uses SQL to achieve flexible data aggregation. The experimental results show that the proposed scheme can alleviate the problem of limited performance of Io T equipment, make data reliable, and meet the diverse data needs on the chain.
文摘This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.
文摘This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation.
基金This work was supported by the National Key R&D Program of China under Grant 2023YFB2703802the Hunan Province Innovation and Entrepreneurship Training Program for College Students S202311528073.
文摘Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金supported by the National Key R&D Program of China(No.2022YFB3103400)the National Natural Science Foundation of China under Grants 61932015 and 62172317.
文摘The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley support program(2023-DD-RD-0152)supervised by the Innovation Foundation.It was also partially supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2024-2020-0-01797)supervised by the Institute for Information&Communications Technology Planning&Evaluation(IITP).
文摘In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.
基金supported by the National Key Research and Development Program of China(No.2018YFC1503401).
文摘The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center.
文摘This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.
基金National Key Research and Development Program of China(2021ZD0113704).
文摘In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.
文摘With the advancements in the era of artificial intelligence,blockchain,cloud computing,and big data,there is a need for secure,decentralized medical record storage and retrieval systems.While cloud storage solves storage issues,it is challenging to realize secure sharing of records over the network.Medi-block record in the healthcare system has brought a new digitalization method for patients’medical records.This centralized technology provides a symmetrical process between the hospital and doctors when patients urgently need to go to a different or nearby hospital.It enables electronic medical records to be available with the correct authentication and restricts access to medical data retrieval.Medi-block record is the consumer-centered healthcare data system that brings reliable and transparent datasets for the medical record.This study presents an extensive review of proposed solutions aiming to protect the privacy and integrity of medical data by securing data sharing for Medi-block records.It also aims to propose a comprehensive investigation of the recent advances in different methods of securing data sharing,such as using Blockchain technology,Access Control,Privacy-Preserving,Proxy Re-Encryption,and Service-On-Chain approach.Finally,we highlight the open issues and identify the challenges regarding secure data sharing for Medi-block records in the healthcare systems.
文摘Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,storing,and synchronizing energy metering data.Access and sharing limitations are stringent for users,power companies,and researchers,demanding significant resources and time for permissions and verification.This paper proposes a blockchain-based architecture for secure and efficient sharing of electric energy metering data.Further,we propose a data sharing model based on evolutionary game theory.Based on the Lyapunov stability theory,the model’s evolutionary stable strategy(ESS)is analyzed.Numerical results verify the correctness and practicability of the scheme proposed in this paper,and provide a new method for realizing convenient,safe and fast data sharing.
文摘In the past decade,online Peer-to-Peer(P2P)lending platforms have transformed the lending industry,which has been historically dominated by commercial banks.Information technology breakthroughs such as big data-based financial technologies(Fintech)have been identified as important disruptive driving forces for this paradigm shift.In this paper,we take an information economics perspective to investigate how big data affects the transformation of the lending industry.By identifying how signaling and search costs are reduced by big data analytics for credit risk management of P2P lending,we discuss how information asymmetry is reduced in the big data era.Rooted in the lending business,we propose a theory on the economics of big data and outline a number of research opportunities and challenging issues.
基金supported by National Key Technology Support Program(No.2013BAD17B06)Major Program of National Social Science Fund(No.15ZDB154)
文摘Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings not only convenience to people's daily life and more opportunities to enterprises, but more challenges with information security as well. This paper has a research on new types and features of information security issues in the age of big data, and puts forward the solutions for the above issues: build up the big data security management platform, set up the establishment of information security system and implement relevant laws and regulations.
基金supported by the National Natural Science Foundation of China under Grant 61972148。
文摘The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upon blockchain have been explored recently for Internet of Things(IoTs).However,the access from a legitimate user may be denied without the pre-defined policy and data update on the blockchain could be costly to the owners.In this paper,we first address these issues by incorporating the Accountable Subgroup Multi-Signature(ASM)algorithm into the Attribute-based Access Control(ABAC)method with Policy Smart Contract,to provide a finegrained and flexible solution.Next,we propose a policy-based Chameleon Hash algorithm that allows the data to be updated in a reliable and convenient way by the authorized users.Finally,we evaluate our work by comparing its performance with the benchmarks.The results demonstrate significant improvement on the effectiveness and efficiency.
文摘This paper proposes a scheme to obtain location and vital health information using ZigBee system. ZigBee systems are wireless communication systems defined by IEEE 802.154. In the proposed scheme, location information is obtained using the Link Quality Indication (LQI) function of a ZigBee system, which represents the received signal strength. And, the vital health information are collected from the electrocardiogram monitor, the pulse and blood pressure device, attached to the patient’s body. This information is then transmitted to an outside network by ZigBee systems. In this way, vital health information can be transmitted as ZigBee sensor data while patients with the ZigBee terminal are moving. In the experiments using actual ZigBee devices, the proposed scheme could obtain accurate location and vital health information from the sensor data. Moreover, to achieve high reliability in the actual service, the collected amount of sensor data was confirmed by the theoretic calculation, when a ZigBee terminal passed through ZigBee routers. These results indicate that the proposed scheme can be used to detect the accurate location of the ZigBee terminal. And over 99% of the sensor data on vital health information was obtained when the ZigBee terminal passed through approximately four ZigBee routers.
文摘Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.