Flow of fluids within biological tissues often meets with resistance that causes a rate-and size-dependent material behavior known as poroelasticity.Characterizing poroelasticity can provide insight into a broad range...Flow of fluids within biological tissues often meets with resistance that causes a rate-and size-dependent material behavior known as poroelasticity.Characterizing poroelasticity can provide insight into a broad range of physiological functions,and is done qualitatively in the clinic by palpation.Indentation has been widely used for characterizing poroelasticity of soft materials,where quantitative interpretation of indentation requires a model of the underlying physics,and such existingmodels are well established for cases of small strain and modest force relaxationWe showed here that existing models are inadequate for large relaxation,where the force on the indenter at a prescribed depth at long-time scale drops to below half of the initially peak force.We developed an indentation theory for such cases of large relaxation,based upon Biot theory and a generalized Hertz contact model.We demonstrated that proposed theory is suitable for biological tissues(e.g.,spleen,kidney,skin and human cirrhosis liver)with both small and large relaxations.The proposed method would be a powerful tool to characterize poroelastic properties of biological materials for various applications such as pathological study and disease diagnosis.展开更多
裂隙性是膨胀土的重要结构特征,裂隙损伤对膨胀土的变形、强度和稳定性有重要影响。岩土体损伤演化理论是当前研究的前沿课题,选择合理的损伤变量决定着损伤模型的正确性。为评价几种损伤变量表征方法的合理性,以南水北调中线工程陶岔...裂隙性是膨胀土的重要结构特征,裂隙损伤对膨胀土的变形、强度和稳定性有重要影响。岩土体损伤演化理论是当前研究的前沿课题,选择合理的损伤变量决定着损伤模型的正确性。为评价几种损伤变量表征方法的合理性,以南水北调中线工程陶岔引水渠坡的膨胀土为试验研究对象,通过控制净围压和吸力分别为100、50 k Pa下的CT-三轴剪切试验,定量研究了分别基于承载面积、CT数的均值ME和方差SD的损伤变量表征方法的合理性。研究发现,损伤面积相同而损伤部位不同的试样偏应力-应变曲线和强度基本一致;损伤面积和SD可以作为损伤变量表征参数,而ME不适合用来表征膨胀土的损伤变量,虽然ME可以很好地用来定义岩石的损伤变量。试验研究结果可以为建立考虑损伤的膨胀土强度理论和本构模型中损伤变量的选择、定义提供科学依据。展开更多
基于Kachanov连续损伤变量及Fredlund非饱和土有效应力理论,提出了结构性损伤膨胀土的强度表征方法。以南水北调中线工程南阳膨胀土为研究对象,利用改进型非饱和土三轴仪对不同损伤程度的三组15个重塑试样进行控制净围压分别为50,100,15...基于Kachanov连续损伤变量及Fredlund非饱和土有效应力理论,提出了结构性损伤膨胀土的强度表征方法。以南水北调中线工程南阳膨胀土为研究对象,利用改进型非饱和土三轴仪对不同损伤程度的三组15个重塑试样进行控制净围压分别为50,100,150 k Pa的三轴压缩试验,定量分析荷载作用下初始孔洞损伤基元及裂隙演化形式对膨胀土力学特性的影响。实验表明:考虑结构性及损伤的非饱和土力学表征能够很好地描述土体的力学行为;孔洞损伤对膨胀土强度没有一致的强化或弱化效果,而裂隙发育形态、演化形式对土体结构及强度起主导作用;围压能够一定程度上抑制裂隙的开展,通过裂隙面咬合产生强度。根据破坏机制将该力学关系表示为裂隙发育及残余强度两个阶段,线性硬化破坏、弹塑性破坏、脆塑性破坏、线性软化破坏四种破坏模式。研究可为揭示膨胀土边坡破坏的力学机制及预测提供新的参考。展开更多
This study aims to investigate the possibility of using biopolymer(environmental friendly material) to enhance the mechanical behaviors of collapsible soil.Two types of biopolymers were(xanthan gum and guar gum) used ...This study aims to investigate the possibility of using biopolymer(environmental friendly material) to enhance the mechanical behaviors of collapsible soil.Two types of biopolymers were(xanthan gum and guar gum) used in this study due to their stable behaviors under severe conditions and their availability with reasonable prices.The experimental program focused on three major soil properties,i.e.compaction characterizations,collapsible potential and shear parameters.These three properties are essential in process of soil improvement.Different biopolymer concentrations were used in this study and the experimental program was performed at two curing periods(soon after mixing the soil with the biopolymer and after one week curing time).Shear parameters were measured for the treated specimens under both soaked and unsoaked conditions,while a collapsible potential test was performed under different mixing conditions(wet mix and dry mix).A numerical model was built to predict the behavior of the treated collapsible soil after and before water immersing.The results indicated that the ability of both xanthan gum and guar gum can be used as improvement materials for collapsible soil treatment.The collapsible potential has been reduced from 9%to 1%after mixing the soil with 2%biopolymer concentration in the wet case.After one week curing,the cohesion has been increased from 8.5 kPa to105 kPa by increasing the xanthan gum concentration from zero to 2%,leading to an overall improvement in soil shear strength.It also proves that the guar gum is superior to the xanthan gum.The shear strength of soil can be increased by about 30%when using the guar gum in comparison with the xanthan gum at the same conditions;however,the collapsible potential of soil material will be reduced by about 20%.展开更多
文摘Flow of fluids within biological tissues often meets with resistance that causes a rate-and size-dependent material behavior known as poroelasticity.Characterizing poroelasticity can provide insight into a broad range of physiological functions,and is done qualitatively in the clinic by palpation.Indentation has been widely used for characterizing poroelasticity of soft materials,where quantitative interpretation of indentation requires a model of the underlying physics,and such existingmodels are well established for cases of small strain and modest force relaxationWe showed here that existing models are inadequate for large relaxation,where the force on the indenter at a prescribed depth at long-time scale drops to below half of the initially peak force.We developed an indentation theory for such cases of large relaxation,based upon Biot theory and a generalized Hertz contact model.We demonstrated that proposed theory is suitable for biological tissues(e.g.,spleen,kidney,skin and human cirrhosis liver)with both small and large relaxations.The proposed method would be a powerful tool to characterize poroelastic properties of biological materials for various applications such as pathological study and disease diagnosis.
文摘裂隙性是膨胀土的重要结构特征,裂隙损伤对膨胀土的变形、强度和稳定性有重要影响。岩土体损伤演化理论是当前研究的前沿课题,选择合理的损伤变量决定着损伤模型的正确性。为评价几种损伤变量表征方法的合理性,以南水北调中线工程陶岔引水渠坡的膨胀土为试验研究对象,通过控制净围压和吸力分别为100、50 k Pa下的CT-三轴剪切试验,定量研究了分别基于承载面积、CT数的均值ME和方差SD的损伤变量表征方法的合理性。研究发现,损伤面积相同而损伤部位不同的试样偏应力-应变曲线和强度基本一致;损伤面积和SD可以作为损伤变量表征参数,而ME不适合用来表征膨胀土的损伤变量,虽然ME可以很好地用来定义岩石的损伤变量。试验研究结果可以为建立考虑损伤的膨胀土强度理论和本构模型中损伤变量的选择、定义提供科学依据。
文摘基于Kachanov连续损伤变量及Fredlund非饱和土有效应力理论,提出了结构性损伤膨胀土的强度表征方法。以南水北调中线工程南阳膨胀土为研究对象,利用改进型非饱和土三轴仪对不同损伤程度的三组15个重塑试样进行控制净围压分别为50,100,150 k Pa的三轴压缩试验,定量分析荷载作用下初始孔洞损伤基元及裂隙演化形式对膨胀土力学特性的影响。实验表明:考虑结构性及损伤的非饱和土力学表征能够很好地描述土体的力学行为;孔洞损伤对膨胀土强度没有一致的强化或弱化效果,而裂隙发育形态、演化形式对土体结构及强度起主导作用;围压能够一定程度上抑制裂隙的开展,通过裂隙面咬合产生强度。根据破坏机制将该力学关系表示为裂隙发育及残余强度两个阶段,线性硬化破坏、弹塑性破坏、脆塑性破坏、线性软化破坏四种破坏模式。研究可为揭示膨胀土边坡破坏的力学机制及预测提供新的参考。
文摘This study aims to investigate the possibility of using biopolymer(environmental friendly material) to enhance the mechanical behaviors of collapsible soil.Two types of biopolymers were(xanthan gum and guar gum) used in this study due to their stable behaviors under severe conditions and their availability with reasonable prices.The experimental program focused on three major soil properties,i.e.compaction characterizations,collapsible potential and shear parameters.These three properties are essential in process of soil improvement.Different biopolymer concentrations were used in this study and the experimental program was performed at two curing periods(soon after mixing the soil with the biopolymer and after one week curing time).Shear parameters were measured for the treated specimens under both soaked and unsoaked conditions,while a collapsible potential test was performed under different mixing conditions(wet mix and dry mix).A numerical model was built to predict the behavior of the treated collapsible soil after and before water immersing.The results indicated that the ability of both xanthan gum and guar gum can be used as improvement materials for collapsible soil treatment.The collapsible potential has been reduced from 9%to 1%after mixing the soil with 2%biopolymer concentration in the wet case.After one week curing,the cohesion has been increased from 8.5 kPa to105 kPa by increasing the xanthan gum concentration from zero to 2%,leading to an overall improvement in soil shear strength.It also proves that the guar gum is superior to the xanthan gum.The shear strength of soil can be increased by about 30%when using the guar gum in comparison with the xanthan gum at the same conditions;however,the collapsible potential of soil material will be reduced by about 20%.