期刊文献+
共找到1,990篇文章
< 1 2 100 >
每页显示 20 50 100
Roughness characterization and shearing dislocation failure for rock-backfill interface
1
作者 Meifeng Cai Zhilou Feng +3 位作者 Qifeng Guo Xiong Yin Minghui Ma Xun Xi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1167-1176,共10页
Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shear... Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shearing dislocation.Using digital image techno-logy and three-dimensional(3D)laser morphology scanning techniques,a set of 3D models with rough joint surfaces was established.Further,the mechanical behavior of rock–backfill shearing dislocation was investigated using a direct shear test.The effects of interface roughness on the shear–displacement curve and failure characteristics of rock–backfill specimens were considered.The 3D fractal dimen-sion,profile line joint roughness coefficient(JRC),profile line two-dimensional fractal dimension,and the surface curvature of the frac-tures were obtained.The correlation characterization of surface roughness was then analyzed,and the shear strength could be measured and calculated using JRC.The results showed the following:there were three failure threshold value points in rock–backfill shearing dis-location:30%–50%displacement before the peak,70%–90%displacement before the peak,and 100%displacement before the peak to post-peak,which could be a sign for rock–backfill shearing dislocation failure.The surface JRC could be used to judge the rock–backfill shearing dislocation failure,including post-peak sliding,uniform variations,and gradient change,corresponding to rock–backfill disloca-tion failure on the field site.The research reveals the damage mechanism for rock–backfill complexes based on the free joint surface,fills the gap of existing shearing theoretical systems for isomerism complexes,and provides a theoretical basis for the prevention and control of possible disasters in backfill mining. 展开更多
关键词 rock–backfill ROUGHNESS correlation characterization shearing dislocation interface failure
下载PDF
A failure criterion for shale considering the anisotropy and hydration based on the shear slide failure model 被引量:2
2
作者 Qiangui Zhang Bowei Yao +7 位作者 Xiangyu Fan Yong Li Nicholas Fantuzzi Tianshou Ma Yufei Chen Feitao Zeng Xing Li Lizhi Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期447-462,共16页
A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shea... A failure criterion fully considering the anisotropy and hydration of shale is essential for shale formation stability evaluation.Thus,a novel failure criterion for hydration shale is developed by using Jaeger’s shear failure criterion to describe the anisotropy and using the shear strength reduction caused by clay minerals hydration to evaluate the hydration.This failure criterion is defined with four parameters in Jaeger’s shear failure criterion(S_(1),S_(2),a andφ),three hydration parameters(k,ω_(sh)andσ_(s))and two material size parameters(d and l0).The physical meanings and determining procedures of these parameters are described.The accuracy and applicability of this failure criterion are examined using the published experimental data,showing a cohesive agreement between the predicted values and the testing results,R^(2)=0.916 and AAREP(average absolute relative error percentage)of 9.260%.The error(|D_(p)|)is then discussed considering the effects ofβ(angle between bedding plane versus axial loading),moisture content and confining pressure,presenting that|Dp|increases whenβis closer to 30°,and|D_(p)|decreases with decreasing moisture content and with increasing confining pressure.Moreover,|D_(p)|is demonstrated as being sensitive to S1and being steady with decrease in the data set whenβis 0°,30°,45°and 90°. 展开更多
关键词 SHALE failure criterion Mechanical strength shear slide failure ANISOTROPY HYDRATION
下载PDF
Prediction and Verifcation of Forming Limit Diagrams Based on a Modifed Shear Failure Criterion
3
作者 Haibo Wang Zipeng Wang +1 位作者 Yu Yan Yuanhui Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期364-373,共10页
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o... The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals. 展开更多
关键词 Modifed shear failure criterion Sheet metal forming Forming limit diagram Loading path
下载PDF
Real-time Shear Wave Elastography Assessment of Muscle Elasticity in Patients with Renal Failure
4
作者 Lei Ran Lei Wang Tingting Cai 《Journal of Clinical and Nursing Research》 2023年第5期66-71,共6页
Objective:To explore the value of real-time elastic shear wave in evaluating muscle elasticity in patients with renal failure.Methods:50 patients with chronic renal failure from January 2019 to December 2022 were rand... Objective:To explore the value of real-time elastic shear wave in evaluating muscle elasticity in patients with renal failure.Methods:50 patients with chronic renal failure from January 2019 to December 2022 were randomly selected as the experimental group,and 50 healthy patients aged 21-61 during the same period were selected as the control group,and the basic information of the patients,including age,gender,body mass index,etc.,were collected.Besides,the Young's modulus of the two groups of patients were observed and analyzed.Results:The Young's modulus values of left and right gastrocnemius muscles in the experimental group were significantly lower than those in the control group(P<0.05),and there was no statistical difference between the left and right sides of the experimental group and the control group(P>0.05).Conclusion:Real-time shear wave elastography provides a non-invasive,real-time and effective tool for the assessment of muscle elasticity in patients with renal failure.Through further research and optimization,real-time shear wave elastography will play a greater role in the prevention and treatment of patients with renal failure,improving the quality of life and prognosis of patients. 展开更多
关键词 Real-time shear wave elastography Renal failure Muscle elasticity
下载PDF
Dynamic behaviors of rockslides subjected to brittle failure of locked segments 被引量:1
5
作者 HU Kai ZHAO Xiao-yan ZHANG Guang-ze 《Journal of Mountain Science》 SCIE CSCD 2023年第2期532-541,共10页
Locked segments are recognized as a critical role that controls the stability of rock slopes but remain an unclear and challenging problem with respect to their role incorporated into the failure mechanism.In order to... Locked segments are recognized as a critical role that controls the stability of rock slopes but remain an unclear and challenging problem with respect to their role incorporated into the failure mechanism.In order to study the effect of the locked segments on the initial failure process of rockslides,thirty-six groups of locked segment specimens with three different lithologies were prepared,direct shear tests were carried out to obtain the accelerations caused by brittle failure of the locked segment specimens.Experiment results showed that the maximum accelerations caused by the brittle failure of locked segment specimens was 2.91 g in the horizontal direction,and 3.18 g in the vertical direction.We took the Wangjiayan rockslide in 2008 Wenchuan earthquake as an example,the critical balance condition of the sliding mass under combined effect of gravity and accelerations induced by brittle failure of locked segment was analyzed,which indicated that the initial failure process of the Wangjiayan rockslides was notably influenced by the existence of the locked segment.The departure acceleration and direction of the Wangjiayan rockslide were proposed.The study results can provide a new insight into the understanding of the initial failure mechanism of rockslides with locked segments. 展开更多
关键词 Rockslides ROCKFALLS Locked segment Direct shear test Initial failure mechanism Sudden departure Brittle failure
下载PDF
AN ANALYSIS oF THE SHEAR FAILURE OF RIGID-LINEAR HARDENING BEAMS UNDER IMPULSIVE LOADING 被引量:4
6
作者 王礼立 Norman Jones 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第4期338-348,共11页
A theoretical rigid-plastic analysis for the dynamic shear failure of beams under impulsive loading is presented when using a travelling plastic shear hinge model which tabes into account material strain hardening. Th... A theoretical rigid-plastic analysis for the dynamic shear failure of beams under impulsive loading is presented when using a travelling plastic shear hinge model which tabes into account material strain hardening. The maximum dynamic shear strain and shear strain-rate can be predicted in addition to the permanent transverse deflections and other parameters. The conditions for the three modes of shear failure, i.e., excess deflection failure, excess shear strain failure and adiabatic shear failure are analyzed. The special case of an infinitesimally small plastic zone is discussed and compared with Nonaka's solution for a rigid, perfectly plastic material. The results can also be generalized to examine the dynamic response of fibre-reinforced beams. 展开更多
关键词 shear failure rigid-linear hardening plastic beam dynamic response impulsive loading adiabatic shear
下载PDF
Effect of gravel on rock failure in glutenite reservoirs under different confining pressures
7
作者 Jian-Tong Liu Jian-Bo Wang +5 位作者 Hong-Kui Ge Wei Zhou Bei-Bei Chen Xiao-Di Li Xian-Jie Xue Sen-Lin Luo 《Petroleum Science》 SCIE EI CSCD 2023年第5期3022-3036,共15页
Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we perform... Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we performed triaxial compression tests on different glutenites.The results indicate that failure modes of glutenite are complex due to the existence of gravel.Under different confining pressures,three failure modes were observed.The first failure mode,a tensile failure under uniaxial compression,produces multiple tortuous longitudinal cracks.In this failure mode,the interaction between gravels provides the lateral tensile stress for rock splitting.The second failure mode occurs under low and medium confining pressure and produces a crack band composed of micro-cracks around gravels.This failure mode conforms to the Mohr-Coulomb criterion and is generated by shear failure.In this failure mode,shear dilatancy and shear compaction may occur under different confining pressures to produce different crack band types.In the second failure mode,gravel-induced stress concentration produces masses of initial micro-cracks for shear cracking,and gravels deflect the fracture surfaces.As a result,the fracture is characterized by crack bands that are far broader than in fine-grained rocks.The third failure mode requires high confining pressure and produces disconnected cracks around gravels without apparent crack bands.In this failure mode,the gravel rarely breaks,indicating that the formation of these fractures is related to the deformation of the matrix.The third failure mode requires lower confining pressure in glutenite with weak cement and matrix support.Generally,unlike fine-grained rocks,the failure mode of glutenite is not only controlled by confining pressure but also by the gravel.The failure of glutenite is characterized by producing cracks around gravels.These cracks are produced by different mechanisms and distributed in different manners under different confining pressures to form different fracture patterns.Therefore,understanding the rock microstructure and formation stress state is essential in guiding glutenite reservoir development. 展开更多
关键词 GLUTENITE HETEROGENEITY failure mode Triaxial compression test shear dilatancy shear compaction
下载PDF
Shear Failure of a Clamped Dented Tubular Beam Under Lateral Impact 被引量:1
8
作者 Wang Deyu and Zhang Shanyuan Associate Prof., Depart, of Naval Archi. and Ocean Engineering, Shanghai Jiaotong University, Shanghai 200030 Prof., Research Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024 《China Ocean Engineering》 SCIE EI 1996年第2期161-168,共8页
The shear failure of a rigid-plastic dented clamped tubular beam under the lateral impact of a mass is investigated. Both the denting and the impact point are in the middle span of the beam. It is assumed that denting... The shear failure of a rigid-plastic dented clamped tubular beam under the lateral impact of a mass is investigated. Both the denting and the impact point are in the middle span of the beam. It is assumed that denting does not spread during the shear sliding. Numerical results show that the axial force and lateral deflection of the beam are very small at the moment of the occurence of shear failure, which means that the finite deformation effect can be neglected in the shear failure analysis. Also, some aspects of the initial impact energy are investigated. 展开更多
关键词 shear sliding failure tubular member local denting collosion finite deformation
下载PDF
SHEAR BEAM MODEL FOR INTERFACE FAILURE UNDER ANTIPLANE SHEAR(Ⅱ)—INSTABILITY 被引量:1
9
作者 沈新普 Zenon Mroz 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第11期1229-1236,共8页
Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the ... Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed. 展开更多
关键词 interface layer antiplane shear failure shear beam model INSTABILITY snap_through snap_back dam?
下载PDF
Short beam shear properties and failure modes of the wood-based X-type lattice sandwich structure 被引量:1
10
作者 Tengteng Zheng Liuxiao Zou Yingcheng Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期877-887,共11页
A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties... A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties and the failure modes of the wood-based X-type lattice sandwich structure with different core direction(vertical and parallel),unit specification(120 mm×60 mm and 60 mm×60 mm),core size(50 mm and 60 mm),and drilling depth(9 mm and 12 mm)were investigated by a short beam shear test and the establishment of a theoretical model to study the equivalent shear modulus and deflection response of the X-type lattice sandwich structure.Results from the short beam shear test and the theoretical model showed that the failure modes of the wood-based X-type lattice sandwich structure were mainly the wrinkling and crushing of the panels under three-point bending load.The experimental values of deflection response of various type specimens were higher than the theoretical values of them.For the core direction of parallel,the smaller the unit specification is,the shorter the core size is,and the deeper the drilling depth is,the greater the short beam shear properties of the wood-based X-type lattice sandwich structure is. 展开更多
关键词 X-type Lattice sandwich structure failure modes Short beam shear properties Theoretical model
下载PDF
Mechanical behaviors of backfill-rock composites: Physical shear test and back-analysis
11
作者 Jie Xin Quan Jiang +5 位作者 Fengqiang Gong Lang Liu Chang Liu Qiang Liu Yao Yang Pengfei Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期807-827,共21页
The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backf... The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering. 展开更多
关键词 Physical simulation Backfill-rock composites shear failure CRACKING shear constitutive model
下载PDF
Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode 被引量:7
12
作者 Sun Zhiguo Wang Dongsheng +1 位作者 Du Xiuli Si Bingjun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期553-567,共15页
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were f... An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided. 展开更多
关键词 bridge piers rapid repair after earthquakes flexural-shear failure carbon fiber reinforced polymers (CFRP) cyclic testing
下载PDF
Failure Mechanism of Laminated Damping Steel Sheet during Tensile-Shearing 被引量:1
13
作者 ChengguoWANG YujunBAI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第1期80-82,共3页
关键词 Laminated damping steel sheet Tensile-shear failure CRAZE
下载PDF
SHEAR BEAM MODEL FOR INTERFACE FAILURE UNDER ANTIPLANE SHEAR(Ⅰ)—FUNDAMENTAL BEHAVIOR
14
作者 沈新普 Zenon Mroz 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第11期1221-1228,共8页
The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mecha... The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack' was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated. 展开更多
关键词 interface layer cohesive layer anti_plane shear shear beam model failure INSTABILITY damag?
下载PDF
Definition of failure criterion for frozen soil under directional shear-stress path 被引量:1
15
作者 Dun Chen Wei Ma +3 位作者 GuoYu Li ZhiWei Zhou YanHu Mu ShiJie Chen 《Research in Cold and Arid Regions》 CSCD 2019年第6期428-434,共7页
A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests we... A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path. 展开更多
关键词 frozen soil hollow cylinder apparatus intermediate principal stress coefficient failure criterion directional
下载PDF
Analysis of Shear Failure in Reinforced Concrete Beams without Stirrups
16
作者 Marta Slowik 《Journal of Civil Engineering and Architecture》 2010年第8期45-52,共8页
关键词 钢筋混凝土无腹筋梁 破坏分析 剪切 实验方案 纵向钢筋 混凝土构件 抗弯承载力 混凝土裂缝
下载PDF
Limit equilibrium analysis of translational failure of landfills under different leachate buildup conditions 被引量:7
17
作者 Qian Xuede 《Water Science and Engineering》 EI CAS 2008年第1期44-62,共19页
Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of ... Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of translational failure of landfills and the effects of parametric variation on the factor of safety (FS) of landfills under different leachate buildup conditions. During the development of the calculation methods, 4 leachate buildup conditions are considered. The FS for an interface with high friction angle and low apparent cohesion generally drops much more quickly when leachate levels are increased than that for an interface under inverse conditions. The critical interface of a multilayer liner system with the lowest FS for the entire waste mass can shift from one to another with changes in the leachate levels. The different interfaces of a multilayer liner will have different FS-values under different leachate buildup conditions. 展开更多
关键词 LANDFILLS failure WEDGE leachate level SEEPAGE shear strength COHESION
下载PDF
Considerations of rock dilation on modeling failure and deformation of hard rocks-a case study of the mine-by test tunnel in Canada 被引量:9
18
作者 Xingguang Zhao Meifeng Cai MCai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期338-349,共12页
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t... For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data. 展开更多
关键词 hard rocks brittle failure deformation dilation angle model confinement plastic shear strain mine-by test tunnel
下载PDF
Phenomena and theoretical analysis for the failure of brittle rocks 被引量:5
19
作者 Faquan Wu Jie Wu Shengwen Qi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期331-337,共7页
Rockburst, an unstable failure of brittle rocks, has been greatly concerned in rock mechanics and rock engineering for more than 100 years. The current understanding on the mechanical mechanism of rockburst is based o... Rockburst, an unstable failure of brittle rocks, has been greatly concerned in rock mechanics and rock engineering for more than 100 years. The current understanding on the mechanical mechanism of rockburst is based on the Coulomb theory, i.e. compressive-shear failure theory. This paper illustrates a series of tensile and tensile-shear fracture phenomena of rockburst, and proposes a methodology for the analysis of fracture mode and its energy dissipation process based on Griffith theory. It is believed that: (1) the fracture modes of rockburst should include compressive-shear, tensile-shear and pure tensile failures; (2) the rupture angle of rock mass decreases with the occurrence of tensile stress; (3) the proportion of kinetic energy in the released strain energy from a rockburst may be much larger than that transferred into surface energy; and (4) the understanding on the tensile and tensile-shear failure modes of rockburst may change the basic thinking of rockburst control, i.e. from keeping the reduction in initial compressive stress σ3 to restricting the creation of secondary tensile stress. 展开更多
关键词 failure of brittle rock tensile-shear fracture Griffith criterion released strain energy kinetic energy
下载PDF
Analysis of progressive failure of pillar and instabilitycriterion based on gradient-dependent plasticity 被引量:8
20
作者 王学滨 《Journal of Central South University of Technology》 2004年第4期445-450,共6页
A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In t... A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar. 展开更多
关键词 不稳定度准数 应变软化 矿柱 应变定位 剪切带 逐步损坏 岩层突裂
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部