By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the proces...By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.展开更多
The reversed shear (RS) mode is one of the advanced configurations being considered in EAST. Predictive simulations of EAST reversed shear configuration are carried out using an 1.5D equilibrium evolution code. In o...The reversed shear (RS) mode is one of the advanced configurations being considered in EAST. Predictive simulations of EAST reversed shear configuration are carried out using an 1.5D equilibrium evolution code. In order to have the desired monotonic q-profile during a tokamak discharge, a successful preparation phase is required. In our simulation, the plasma current is ramped up from 100 kA to a fiat-top maximum of 1.0 MA for four seconds. An ICRH power of 1 MW is applied until the plasma shape is formed at the moment of 4 s, and then the power is raised to 3 MW. A LHCD power of 3.5 MW is applied from ls to optimize the plasma current density profile. A series of simulations are performed to study the influence of the time of applying the auxiliary heating on the plasma parameters. Based on these simulations, a scheme is proposed and tested for the control of the safety factor profile, which is very useful in real time profile control in tokamak experiments.展开更多
Mixed convection flow is one of the essential criteria of fluid flow and heat transfer. And its application has been increased due to modernization of society. So, to compete with the global world an analysis has been...Mixed convection flow is one of the essential criteria of fluid flow and heat transfer. And its application has been increased due to modernization of society. So, to compete with the global world an analysis has been investigated numerically. In this study we have considered 2D double lid driven cavity with two-sided adiabatic walls. This problem is illustrated mathematically by a collection of governing equations and the developed model has been solved numerically by using Finite Difference Method (FDM). The goal of the present study is to analyze numerically the thermal behaviour and parameters effect on heat transfer inside the 2D chamber. Also this analysis has been observed for the case where the upper wall is moving at positive direction and lower wall is moving at negative direction with constant speed. Furthermore, we have tried to analyze the velocity and temperature profiles for a vast range of dimensionless parameters namely Reynolds number (Re), Richardson number (Ri)?and Prandtl number?(Pr)?and presented graphically. Moreover, it is found that these flow parameters have significant effects in controlling the flow behavior inside the cavity. A comparison has been done to validate our code and found a good agreement. Finally, average Nusselt number (Nu)?has been studied for the effects of these parameters and presented in tabular form.展开更多
This paper presents the recent study by investigating the vital responses of wire bonding with the application of conduction pre-heating. It is observed through literature reviews that, the effect of pre-heating has n...This paper presents the recent study by investigating the vital responses of wire bonding with the application of conduction pre-heating. It is observed through literature reviews that, the effect of pre-heating has not been completely explored to enable the successful application of pre-heating during wire bonding. The aim of wire bonding is to form quality and reliable solid-state bonds to interconnect metals such as gold wires to metalized pads deposited on silicon integrated circuits. Typically, there are 3 main wire bonding techniques applied in the industry;Thermo-compression, Ultrasonic and Thermosonic. This experiment utilizes the most common and widely used platform which is thermosonic bonding. This technique is explored with the application of conduction pre-heating along with heat on the bonding site, ultrasonic energy and force on an Au-Al system. Sixteen groups of bonding conditions which include eight hundred data points of shear strength at various temperature settings were compared to establish the relationship between bonding strength and the application of conduction pre-heating. The results of this study will clearly indicate the effects of applied conduction pre-heating towards bonding strength which may further produce a robust wire bonding system.展开更多
The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated thr...The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated through the shear test after aging at 120℃ for 0, 1, 4, 9 and 16 d. Different typical shear failure behaviors have been found in the loading curves (shear force vs displacement). From the results of interracial morphology analysis of the fracture surfaces and cross-sections, two main typical failure modes have been identified. The probabilities of the failure modes occurrence are inconsistent when the joints were aged for different times. The evolution of the brittle NiaSn4 and Cu-Ni-Au-Sn layers and the grains coarsening of the solder bulk are the basic reasons for the change of shear failure modes.展开更多
The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable <span style="font-family:Verdana;">alternative to replace conventional R134a, which can be beneficial ...The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable <span style="font-family:Verdana;">alternative to replace conventional R134a, which can be beneficial for climate change. A </span><span style="font-family:Verdana;">considerable suggestion is R515A which possesses considerably lower global warming potential. The present simulations are designed to study supercritical fluid R515A under cooling conditions in horizontal position. The effect of pressure, mass flux, heat flux and tube diameter were considered for horizontal tube in the vicinity of pseudo critical temperature. Numeri</span><span style="font-family:Verdana;">cal investigations on heat transfer characteristics of supercritical fluid R515A were per</span><span style="font-family:Verdana;">formed using widely used shear-stress transport (SST) model. Moreover, heat transfer correlations </span><span style="font-family:Verdana;">were developed and suggested to accurately predict Nusselt number within 10% accuracy. </span><span style="font-family:Verdana;">The simulation results showed about 3.98% average absolute deviation.</span>展开更多
Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational...Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in the rectangular ribbed channel using different coolants.Several coolants such as air,steam,air/mist and steam/mist were investigated.The shear stress transport model(SST)is selected by comparing the standard k-ωand Omega Reynolds Stress(ωRS)turbulence models with experimental results.The results indicate that the heat transfer coefficients are enhanced in the ribbed channel while injecting small amounts of mist.The heat transfer coefficients of air/mist,steam and steam/mist increase by 12.5%,49.5%and 107%over that of air,respectively.Furthermore,in comparison to air,the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when the mist mass fraction increases from 2%to 8%,respectively.The steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the considered range of mist mass fraction.展开更多
The results of the numerical studies of vortex formation inside short heat pipes (HP’s) with profiled vapour channel in the Laval-liked nozzle form are presented. For the first time, it was found that the vapour vort...The results of the numerical studies of vortex formation inside short heat pipes (HP’s) with profiled vapour channel in the Laval-liked nozzle form are presented. For the first time, it was found that the vapour vortex of moist compressible vapour flow in the cooled part of vapour channel changes its rotational motion direction. The rotation direction of the toroidal vapour vortex, obtained by solving the Navier Stokes equations is dependent on the heat power value, entering to the HP’s evaporator. With low heat power loads the rotational direction of the circular toroidal vapour ring due to the Coanda effect and sticking moving vapour jets to the channel’s walls occurs from the periphery to the longitudinal axis of the vapour channel. While the heat power load increasing, the direction of the circular toroidal vapour ring rotation changes to the opposite, from the longitudinal axis to the periphery of the vapour channel. The thickness of the formed working fluid condensate film located under the toroidal vapour vortex also related to the evaporator heat power load and the associated toroidal vapour vortex rotation direction. The numerical thickness calculation of the formed working fluid condensate film located under the toroidal vapour vortex was compared with experimental values, obtained by capacitive sensors. The thickness values of the calculated condensate film thickness and experimentally measured values using capacitive sensors are close in magnitude order.展开更多
基金funding provided by the National Natural Science Foundation of China(No.12202137)TY's contribution is funded by the China and Germany Postdoctoral Exchange Program(Grant No.ZD202137).The first author(TY)would like to express his gratitude to Prof.Keita Yoshioka for reviewing this manuscript and for his invaluable feedback.
文摘By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.
基金the National Natural Science Foundation of China(No.10505022)
文摘The reversed shear (RS) mode is one of the advanced configurations being considered in EAST. Predictive simulations of EAST reversed shear configuration are carried out using an 1.5D equilibrium evolution code. In order to have the desired monotonic q-profile during a tokamak discharge, a successful preparation phase is required. In our simulation, the plasma current is ramped up from 100 kA to a fiat-top maximum of 1.0 MA for four seconds. An ICRH power of 1 MW is applied until the plasma shape is formed at the moment of 4 s, and then the power is raised to 3 MW. A LHCD power of 3.5 MW is applied from ls to optimize the plasma current density profile. A series of simulations are performed to study the influence of the time of applying the auxiliary heating on the plasma parameters. Based on these simulations, a scheme is proposed and tested for the control of the safety factor profile, which is very useful in real time profile control in tokamak experiments.
文摘Mixed convection flow is one of the essential criteria of fluid flow and heat transfer. And its application has been increased due to modernization of society. So, to compete with the global world an analysis has been investigated numerically. In this study we have considered 2D double lid driven cavity with two-sided adiabatic walls. This problem is illustrated mathematically by a collection of governing equations and the developed model has been solved numerically by using Finite Difference Method (FDM). The goal of the present study is to analyze numerically the thermal behaviour and parameters effect on heat transfer inside the 2D chamber. Also this analysis has been observed for the case where the upper wall is moving at positive direction and lower wall is moving at negative direction with constant speed. Furthermore, we have tried to analyze the velocity and temperature profiles for a vast range of dimensionless parameters namely Reynolds number (Re), Richardson number (Ri)?and Prandtl number?(Pr)?and presented graphically. Moreover, it is found that these flow parameters have significant effects in controlling the flow behavior inside the cavity. A comparison has been done to validate our code and found a good agreement. Finally, average Nusselt number (Nu)?has been studied for the effects of these parameters and presented in tabular form.
文摘This paper presents the recent study by investigating the vital responses of wire bonding with the application of conduction pre-heating. It is observed through literature reviews that, the effect of pre-heating has not been completely explored to enable the successful application of pre-heating during wire bonding. The aim of wire bonding is to form quality and reliable solid-state bonds to interconnect metals such as gold wires to metalized pads deposited on silicon integrated circuits. Typically, there are 3 main wire bonding techniques applied in the industry;Thermo-compression, Ultrasonic and Thermosonic. This experiment utilizes the most common and widely used platform which is thermosonic bonding. This technique is explored with the application of conduction pre-heating along with heat on the bonding site, ultrasonic energy and force on an Au-Al system. Sixteen groups of bonding conditions which include eight hundred data points of shear strength at various temperature settings were compared to establish the relationship between bonding strength and the application of conduction pre-heating. The results of this study will clearly indicate the effects of applied conduction pre-heating towards bonding strength which may further produce a robust wire bonding system.
文摘The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated through the shear test after aging at 120℃ for 0, 1, 4, 9 and 16 d. Different typical shear failure behaviors have been found in the loading curves (shear force vs displacement). From the results of interracial morphology analysis of the fracture surfaces and cross-sections, two main typical failure modes have been identified. The probabilities of the failure modes occurrence are inconsistent when the joints were aged for different times. The evolution of the brittle NiaSn4 and Cu-Ni-Au-Sn layers and the grains coarsening of the solder bulk are the basic reasons for the change of shear failure modes.
文摘The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable <span style="font-family:Verdana;">alternative to replace conventional R134a, which can be beneficial for climate change. A </span><span style="font-family:Verdana;">considerable suggestion is R515A which possesses considerably lower global warming potential. The present simulations are designed to study supercritical fluid R515A under cooling conditions in horizontal position. The effect of pressure, mass flux, heat flux and tube diameter were considered for horizontal tube in the vicinity of pseudo critical temperature. Numeri</span><span style="font-family:Verdana;">cal investigations on heat transfer characteristics of supercritical fluid R515A were per</span><span style="font-family:Verdana;">formed using widely used shear-stress transport (SST) model. Moreover, heat transfer correlations </span><span style="font-family:Verdana;">were developed and suggested to accurately predict Nusselt number within 10% accuracy. </span><span style="font-family:Verdana;">The simulation results showed about 3.98% average absolute deviation.</span>
基金Supported by the China Scholarship Council (CSC) under Grant No.2011BSZF88
文摘Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in the rectangular ribbed channel using different coolants.Several coolants such as air,steam,air/mist and steam/mist were investigated.The shear stress transport model(SST)is selected by comparing the standard k-ωand Omega Reynolds Stress(ωRS)turbulence models with experimental results.The results indicate that the heat transfer coefficients are enhanced in the ribbed channel while injecting small amounts of mist.The heat transfer coefficients of air/mist,steam and steam/mist increase by 12.5%,49.5%and 107%over that of air,respectively.Furthermore,in comparison to air,the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when the mist mass fraction increases from 2%to 8%,respectively.The steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the considered range of mist mass fraction.
文摘The results of the numerical studies of vortex formation inside short heat pipes (HP’s) with profiled vapour channel in the Laval-liked nozzle form are presented. For the first time, it was found that the vapour vortex of moist compressible vapour flow in the cooled part of vapour channel changes its rotational motion direction. The rotation direction of the toroidal vapour vortex, obtained by solving the Navier Stokes equations is dependent on the heat power value, entering to the HP’s evaporator. With low heat power loads the rotational direction of the circular toroidal vapour ring due to the Coanda effect and sticking moving vapour jets to the channel’s walls occurs from the periphery to the longitudinal axis of the vapour channel. While the heat power load increasing, the direction of the circular toroidal vapour ring rotation changes to the opposite, from the longitudinal axis to the periphery of the vapour channel. The thickness of the formed working fluid condensate film located under the toroidal vapour vortex also related to the evaporator heat power load and the associated toroidal vapour vortex rotation direction. The numerical thickness calculation of the formed working fluid condensate film located under the toroidal vapour vortex was compared with experimental values, obtained by capacitive sensors. The thickness values of the calculated condensate film thickness and experimentally measured values using capacitive sensors are close in magnitude order.