期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Grain refinement of AZ91D alloy by intensive melt shearing and its persistence after remelting and isothermal holding 被引量:4
1
作者 Zuo Yubo Fan Zhongyun Cui Jianzhong 《China Foundry》 SCIE CAS 2013年第1期39-42,共4页
Intensive melt shearing has a significant grain refining effect on some light alloys.However,the persistence of the grain refining effect during isothermal holding and remelting is still unclear,although it is very im... Intensive melt shearing has a significant grain refining effect on some light alloys.However,the persistence of the grain refining effect during isothermal holding and remelting is still unclear,although it is very important for the practical application.In this study,intensive melt shearing was achieved in a twin-screw mechanism to investigate its grain refining effect on AZ91D magnesium alloy.The refinement mechanism was discussed and the persistence of grain refinement after remelting and isothermal holding was also studied.A Zeiss imaging system with polarized light was used for quantitative measurement of grain size.The results show that the intensive melt shearing has a significant grain refining effect on AZ91D magnesium alloy.With the application of intensive melt shearing,the grain size of AZ91D magnesium alloy can be reduced from 530 μm(for a typical as-cast microstructure) to 170 μm,which is about 70% size reduction.The grain refinement achieved by the intensive melt shearing can be partially kept after isothermal holding and remelting.It is believed that the refinement effect was mainly due to the finer and well dispersed oxide particles formed by high intensive shearing.The smaller size of oxide particles and their slow motion velocity in the sheared melt could make important contributions to the remained grain refinement. 展开更多
关键词 magnesium alloy microstructure intensive melt shearing REMELTING isothermal holding
下载PDF
Effect of casting speed on floating grains and macrosegregation ofdirect-chill cast 2024 alloy with intensive melt shearing 被引量:4
2
作者 Xu-dong LIU Qing-feng ZHU +6 位作者 Zhi-meng LI Cheng ZHU Rui WANG Tao JIA Zhi-hao ZHAO Jian-zhong CUI Yu-bo ZUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期565-575,共11页
The ingot was prepared by direct-chill(DC)casting technology with different casting speeds under the influence of intensive melt shearing to explore the effect of casting speed and intensive melt shearing on the float... The ingot was prepared by direct-chill(DC)casting technology with different casting speeds under the influence of intensive melt shearing to explore the effect of casting speed and intensive melt shearing on the floating grains and negative centerline segregation.The results indicate that the application of intensive melt shearing in DC casting process can distribute the floating grains uniformly,reduce the area fraction of the floating grains,alleviate the negative centerline segregation,and improve the uniformity of temperature field in the sump.It is also suggested that under the influence of intensive melt shearing,the casting speed plays a crucial role in the amounts and distribution of floating grains.At low casting speed,the intensive melt shearing can significantly reduce the area fraction of the floating grains and distribute them uniformly throughout the ingot.However,this effect gradually disappears with the increase of casting speed. 展开更多
关键词 direct-chill casting intensive melt shearing MACROSEGREGATION floating grains casting speed 2024 aluminum alloy
下载PDF
A new high shear degassing technology and mechanism for 7032 alloy
3
作者 Yu-bo Zuo Yi-yao Kang +4 位作者 Yue Lin Xu-dong Liu Chao Sun Sen-sen Yuan Jian-zhong Cui 《China Foundry》 SCIE CAS 2015年第4期293-298,共6页
Degassing is very important for aluminum alloys especially for 7xxx series alloys. In the present study, a high shear technology was used to degas 7032 aluminum alloy in order to study its degassing efficiency. The ex... Degassing is very important for aluminum alloys especially for 7xxx series alloys. In the present study, a high shear technology was used to degas 7032 aluminum alloy in order to study its degassing efficiency. The experimental results showed that the high shear technology can significantly degas 7032 aluminum alloy. By applying intensive melt shearing and an Ar injection of 60 seconds, the density index, D,, was reduced from 13.25% to 0.28% and the hydrogen concentration was significantly i'educed from 0.31 to 0.10 mL/100g AI. Compared with the conventional rotary degassing, high shear technology showed a much higher degassing efficiency, achieving a lower concentration of hydrogen in a shorter time. The water simulation experiment was used to study the mechanism of the high degassing efficiency. The small bubble size and the uniform distribution of Ar bubbles with the application of high shear technology are believed to be the main cause for the high degassing efficiency. 展开更多
关键词 aluminum alloy hydrogen DEGASSING intensive melt shearing POROSITY water simulation
下载PDF
Interfacial behavior of a thermoelectric film bonded to a graded substrate
4
作者 Juan PENG Dengke LI +3 位作者 Zaixing HUANG Guangjian PENG Peijian CHEN Shaohua CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1853-1870,共18页
To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate s... To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate system is widely designed and applied,whose interfacial behavior dominates the strength and service life of thermoelectric devices.Herein,a theoretical model of a thermoelectric film bonded to a graded substrate is proposed.The interfacial shear stress,the normal stress in the thermoelectric film,and the stress intensity factors affected by various material and geometric parameters are comprehensively studied.It is found that adjusting the inhomogeneity parameter of the graded substrate,thermal conductivity,and current density of the thermoelectric film can reduce the risk of interfacial failure of the thermoelectric film/graded substrate system.Selecting a stiffer and thicker thermoelectric film is advantageous to the reliability of the thermoelectric film/graded substrate system.The results should be of great guiding significance for the present and upcoming applications of thermoelectric materials in various fields. 展开更多
关键词 thermoelectric film graded substrate interfacial behavior singular integral equation shear stress intensity factor
下载PDF
Analysis of insidious fault activation and water inrush from the mining floor 被引量:8
5
作者 Hu Xinyu Wang Lianguo +1 位作者 Lu Yinlong Yu Mei 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期477-483,共7页
Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insid... Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insidious water-conductive faults. The influence of normal and shear stresses on fault activation and effective shear stress distribution in the fault plane was acquired under mining conditions.Using fracture mechanics theory to calculate the stress intensity factor of an insidious fault front, we have derived the criterion for main fault activation. Results indicate that during the whole working face advance, transpressions are exerted on fault planes twice successively in opposite directions. In most cases, the second transpression is more likely to lead to fault activation. Activation is influenced by many factors, predominant among which are: burial depth of the insidious fault, friction angle of the fault plane, face advance direction and pore water pressure. Steep fault planes are more easily activated to induce a sustained water inrush in the face. 展开更多
关键词 Insidious fault Effective shear stress Stress intensity factor Fault activation Water inrush
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部