The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o...The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.展开更多
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime...A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.展开更多
Mciro-arc oxidation(MAO)was used to coat porous films on the surface of a Zr-based bulk metallic glass sample.The compressive test results indicated that,compared with the as-cast sample,the MAO treated one exhibite...Mciro-arc oxidation(MAO)was used to coat porous films on the surface of a Zr-based bulk metallic glass sample.The compressive test results indicated that,compared with the as-cast sample,the MAO treated one exhibited higher deformation capacity,associated with multiple shear bands with higher density on the side surface and well-developed vein patterns with smaller size on the fractured surface.The pore in the MAOed film and the matrix/coating interface initiated the shear bands and impeded the rapid propagation of shear bands,thus favoring the enhanced plasticity of the MAO treated sample.The obtained results demonstrated that MAO can be considered as an effective method to finely tune the mechanical performance of monolithic bulk metallic glasses.展开更多
基金Supported by R&D Program of Beijing Municipal Education Commission of China(Grant No.KZ200010009041)Beijing Municipal University Youth Top Talents Training Program of China(Grant No.CIT&TCD201704014)Natural Science Foundation of China(Grant No.51475003).
文摘The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
文摘A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51371065,51671070,51671067,51671071)the Opening Funding of AWJ-16-Z02 in the State Key Laboratory of Advanced Welding and Joining,China
文摘Mciro-arc oxidation(MAO)was used to coat porous films on the surface of a Zr-based bulk metallic glass sample.The compressive test results indicated that,compared with the as-cast sample,the MAO treated one exhibited higher deformation capacity,associated with multiple shear bands with higher density on the side surface and well-developed vein patterns with smaller size on the fractured surface.The pore in the MAOed film and the matrix/coating interface initiated the shear bands and impeded the rapid propagation of shear bands,thus favoring the enhanced plasticity of the MAO treated sample.The obtained results demonstrated that MAO can be considered as an effective method to finely tune the mechanical performance of monolithic bulk metallic glasses.