Simultaneous orthokinetic and perikinetic coagulations(SOPCs) are studied for small and large Peclet numbers(P e) using Brownian dynamics simulation.The results demonstrate that the contributions of the Brownian m...Simultaneous orthokinetic and perikinetic coagulations(SOPCs) are studied for small and large Peclet numbers(P e) using Brownian dynamics simulation.The results demonstrate that the contributions of the Brownian motion and the shear flow to the overall coagulation rate are basically not additive.At the early stages of coagulation with small Peclet numbers,the ratio of overall coagulation rate to the rate of pure perikinetic coagulation is proportional to P 1/2 e,while with high Peclet numbers,the ratio of overall coagulation rate to the rate of pure orthokinetic coagulation is proportional to P 1/2 e.Moreover,our results show that the aggregation rate generally changes with time for the SOPC,which is different from that for pure perikinetic and pure orthokinetic coagulations.By comparing the SOPC with pure perikinetic and pure orthokinetic coagulations,we show that the redistribution of particles due to Brownian motion can play a very important role in the SOPC.In addition,the effects of redistribution in the directions perpendicular and parallel to the shear flow direction are different.This perspective explains the behavior of coagulation due to the joint effects of the Brownian motion(perikinetic) and the fluid motion(orthokinetic).展开更多
A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, ...A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, and the underlying hydrodynamic mechanisms are elucidated by the analysis of the motion trajectory, transient droplet deformation and detailed hydrodynamic information(e.g., pressure and flow fields). The results indicate that the hydrodynamic interaction process under shear could be divided into three stages: approaching, colliding, and separating. With the increasing confinement, the interaction time for the passing-over process is shorter and the droplet processes one higher curvature tip and more stretched profile. Furthermore, the lateral separation ?;/R;exhibits larger decrease in the approaching stage and the thickness of the lubrication film is decreased during the interaction. As the initial lateral separation increases, the maximum trajectory shift by the collision interaction is getting smaller. During the collision between two droplets with different sizes, the amplitude of the deformation oscillation of the larger droplet is decreased by reducing the size ratio of the smaller droplet to the bigger one.展开更多
The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element me...The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element method was adopted to calculate the ground motion in the horizontal layered half space. An analysis of peak ground acceleration (PGA) indicates that similar to the sub-shear situation, directivity also exists in the super-shear situation. However, there are some differences as tbllows: (1) The PGA of the fault-normal component decreases with super-shear velocity, and the areas that were significantly affected by directivity in the PGA field changed from a cone-shaped region in the forward direction in a sub-shear situation to a limited near-fault region in a super-shear situation. (2) The PGA of the fault-parallel and vertical component is not as sensitive as the fault-normal component to the increasing super-shear velocity. (3) The PGA of the fault-normal component is not always greater than the fault-parallel component when the rupture velocity exceeds the shear wave velocity.展开更多
The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or iden...The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation oft...Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation ofthe rigid objects(no deformation)in the Newtonian fluid of the simple deformation field has been widely applied by geologists to the study of fabrics in rocks.The theory展开更多
Summarized in the paper are the author's studies on incipient motion of sediment in recent 40 years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are i...Summarized in the paper are the author's studies on incipient motion of sediment in recent 40 years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are important for fine particles. The relations between three stages of incipient motion are defined by use of instantaneous velocity. Formulas for initial velocity and critical shear stress are given and overall verified by the author's and others' experimental data.展开更多
Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion...Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.展开更多
A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was ca...A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was calculated by a time mean velocity formula for two dimensional homogeneous shear turbulent flows in open channel, the velocity fluctuation of the fluid was determined by Fourier expansion and fluctuation spectrum, and the particle motion equation was solved using Ronge Kutta method. For comparison, the spherical cation exchange resins with a density of 1 44 g/cm\+3 and diameters ranging from 0 50—0 60 mm, 0 60—0 70 mm and 0 80—0 90 mm were selected as the experimental solid particles, and their moving velocities and trajectories in shear turbulent flows with the flow Reynolds number of 4710, 10240, 11900 and 20760 were investigated. The comparing analyses of the modeled results with the measured results have shown that the model developed in this paper can describe the motions of the particles in shear turbulent flow.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10972217,10932012 and 11032011)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08)
文摘Simultaneous orthokinetic and perikinetic coagulations(SOPCs) are studied for small and large Peclet numbers(P e) using Brownian dynamics simulation.The results demonstrate that the contributions of the Brownian motion and the shear flow to the overall coagulation rate are basically not additive.At the early stages of coagulation with small Peclet numbers,the ratio of overall coagulation rate to the rate of pure perikinetic coagulation is proportional to P 1/2 e,while with high Peclet numbers,the ratio of overall coagulation rate to the rate of pure orthokinetic coagulation is proportional to P 1/2 e.Moreover,our results show that the aggregation rate generally changes with time for the SOPC,which is different from that for pure perikinetic and pure orthokinetic coagulations.By comparing the SOPC with pure perikinetic and pure orthokinetic coagulations,we show that the redistribution of particles due to Brownian motion can play a very important role in the SOPC.In addition,the effects of redistribution in the directions perpendicular and parallel to the shear flow direction are different.This perspective explains the behavior of coagulation due to the joint effects of the Brownian motion(perikinetic) and the fluid motion(orthokinetic).
基金supported by the NSAF(Grants No.U1530260)the National Natural Science Foundation of China(Grant No.51306158)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130621)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(the second phase)
文摘A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, and the underlying hydrodynamic mechanisms are elucidated by the analysis of the motion trajectory, transient droplet deformation and detailed hydrodynamic information(e.g., pressure and flow fields). The results indicate that the hydrodynamic interaction process under shear could be divided into three stages: approaching, colliding, and separating. With the increasing confinement, the interaction time for the passing-over process is shorter and the droplet processes one higher curvature tip and more stretched profile. Furthermore, the lateral separation ?;/R;exhibits larger decrease in the approaching stage and the thickness of the lubrication film is decreased during the interaction. As the initial lateral separation increases, the maximum trajectory shift by the collision interaction is getting smaller. During the collision between two droplets with different sizes, the amplitude of the deformation oscillation of the larger droplet is decreased by reducing the size ratio of the smaller droplet to the bigger one.
基金Basic Science Research Foundation of IEM,CEA under Grant No.2011B02973 Program under Grant No.2011CB013601+1 种基金National Natural Science Foundation of China under Grant Nos.51238012,9121530113International Science&Technology Cooperation Program of China under Grant No.2012DFA70810
文摘The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element method was adopted to calculate the ground motion in the horizontal layered half space. An analysis of peak ground acceleration (PGA) indicates that similar to the sub-shear situation, directivity also exists in the super-shear situation. However, there are some differences as tbllows: (1) The PGA of the fault-normal component decreases with super-shear velocity, and the areas that were significantly affected by directivity in the PGA field changed from a cone-shaped region in the forward direction in a sub-shear situation to a limited near-fault region in a super-shear situation. (2) The PGA of the fault-parallel and vertical component is not as sensitive as the fault-normal component to the increasing super-shear velocity. (3) The PGA of the fault-normal component is not always greater than the fault-parallel component when the rupture velocity exceeds the shear wave velocity.
文摘The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
文摘Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation ofthe rigid objects(no deformation)in the Newtonian fluid of the simple deformation field has been widely applied by geologists to the study of fabrics in rocks.The theory
文摘Summarized in the paper are the author's studies on incipient motion of sediment in recent 40 years. In addition to the forces of gravity, drag and lift, the cohesive force and the additional static pressure are important for fine particles. The relations between three stages of incipient motion are defined by use of instantaneous velocity. Formulas for initial velocity and critical shear stress are given and overall verified by the author's and others' experimental data.
基金This research was financially supported by the High Technology Research and Development Programof China(863 Program,Grant No.2002AA601011)
文摘Experiments on silt incipient motion under wave action were carried out. Under wave action, for different wave periods, water depths and bulk densities of silt, the shear stress or height of waves for incipient motion was determined, and a relation between the shear stress and bulk density of silt was established. Results indicate that the critical shear stress depends on the structure of the silt itself, related to the tightness between the grains (or bulk density). Exterior condition is only an external cause of silt incipient motion, and the critical shear stress for the incipient motion is the token of exterior condition.
文摘A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was calculated by a time mean velocity formula for two dimensional homogeneous shear turbulent flows in open channel, the velocity fluctuation of the fluid was determined by Fourier expansion and fluctuation spectrum, and the particle motion equation was solved using Ronge Kutta method. For comparison, the spherical cation exchange resins with a density of 1 44 g/cm\+3 and diameters ranging from 0 50—0 60 mm, 0 60—0 70 mm and 0 80—0 90 mm were selected as the experimental solid particles, and their moving velocities and trajectories in shear turbulent flows with the flow Reynolds number of 4710, 10240, 11900 and 20760 were investigated. The comparing analyses of the modeled results with the measured results have shown that the model developed in this paper can describe the motions of the particles in shear turbulent flow.