期刊文献+
共找到328篇文章
< 1 2 17 >
每页显示 20 50 100
Boulder-induced form roughness and skin shear stresses in a gravel-bed stream
1
作者 DAS Ratul DATTA Akash 《Journal of Mountain Science》 SCIE CSCD 2024年第1期346-360,共15页
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac... Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface. 展开更多
关键词 Array of boulders Near wake flow zones Velocity distributions Skin roughness Form induced shear stresses
下载PDF
Wave-current bottom shear stresses and sediment re-suspension in the mouth bar of the Modaomen Estuary during the dry season 被引量:6
2
作者 JIA Liangwen REN Jie +2 位作者 NIE Dan CHEN Benzhong LV Xiaoying 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期107-115,共9页
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating botto... On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment. 展开更多
关键词 Modaomen Estuary WAVE-CURRENT bottom shear stresses SEDIMENT
下载PDF
Effects of bottom shear stresses on the wave-induced dynamic response in a porous seabed:PORO-WSSI (shear) model 被引量:7
3
作者 J.Ye D.-S.Jeng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期898-910,共13页
When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction syste... When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction system,while dynamic wave pressures provide a vertical loading in the system.However,the bottom shear stresses have been ignored in most previous studies in the past.In this study,the effects of the bottom shear stresses on the dynamic response in a seabed of finite thickness under wave loading will be examined,based on Biot's dynamic poro-elastic theory.In the model,an "u-p" approximation will be adopted instead of quasi-static model that have been used in most previous studies.Numerical results indicate that the bottom shear stresses has certain influences on the wave-induced seabed dynamic response.Furthermore,wave and soil characteristics have considerable influences on the relative difference of seabed response between the previous model(without shear stresses) and the present model(with shear stresses).As shown in the parametric study,the relative differences between two models could up to 10% of p0,depending on the amplitude of bottom shear stresses. 展开更多
关键词 Bottom shear stresses Wave-induced dynamicresponse Porous seabed - "u-p" approximation - Biot's the-ory
下载PDF
Stationary Flow of Blood in a Rigid Vessel in the Presence of an External Magnetic Field: Considerations about the Forces and Wall Shear Stresses 被引量:3
4
作者 Agnè s Drochon +2 位作者 Vincent Robin Odette Fokapu Dima Abi-Abdallah Rodriguez 《Applied Mathematics》 2016年第2期130-136,共7页
The magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B0. When an artery is exposed to a magnetic field, the blood charged particles are d... The magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B0. When an artery is exposed to a magnetic field, the blood charged particles are deviated by the Lorentz force thus inducing electrical currents and voltages along the vessel walls and in the neighboring tissues. Such a situation may occur in several biomedical applications: magnetic resonance imaging (MRI), magnetic drug transport and targeting, tissue engineering… In this paper, we consider the steady unidirectional blood flow in a straight circular rigid vessel with non-conducting walls, in the presence of an exterior static magnetic field. The exact solution of Gold (1962) (with the induced fields not neglected) is revisited. It is shown that the integration over a cross section of the vessel of the longitudinal projection of the Lorentz force is zero, and that this result is related to the existence of current return paths, whose contributions compensate each other over the section. It is also demonstrated that the classical definition of the shear stresses cannot apply in this situation of magnetohydrodynamic flow, because, due to the existence of the Lorentz force, the axisymmetry is broken. 展开更多
关键词 Magnetohydrodynamic Flow of Blood Wall shear stresses Magnetic Field in Biomedical Applications
下载PDF
Simulation of Random Waves and Associated Laminar Bottom Shear Stresses
5
作者 Ching-Jer HUANG 《China Ocean Engineering》 SCIE EI 2008年第3期477-490,共14页
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady ... This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundaiy conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves axe determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the nanlerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug' s model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate. 展开更多
关键词 random waves laminar bottom shear stresses SPECTRA Coda- JONSWAP spectral density transfer function Navier-Stokes equations boundary-layer flows
下载PDF
TWO COPLANAR CRACKS IN A TRANSVERSELY ISOTROPIC ELASTIC SLAB SUBJECTED TO ANTIPLANE SHEAR STRESSES
6
作者 洪怀忠 《Acta Mathematica Scientia》 SCIE CSCD 1991年第1期32-38,共7页
The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in ter... The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in terms of a finite-part singular integral equation which can be solved numerically, Once the integral equation is solved, relevant quantities such as the crack energy can be readily computed. 展开更多
关键词 TWO COPLANAR CRACKS IN A TRANSVERSELY ISOTROPIC ELASTIC SLAB SUBJECTED TO ANTIPLANE shear stresses
下载PDF
Estimation of Bed Shear Stresses in the Pearl River Estuary 被引量:1
7
作者 刘欢 吴加学 《China Ocean Engineering》 SCIE EI CSCD 2015年第1期133-142,共10页
Mean and fluctuating velocities were measured by use of a pulse coherent acoustic Doppler profiler (PC-ADP) and an acoustic Doppler velocimeter in the tidal bottom boundary layer of the Pearl River Estuary. The bed ... Mean and fluctuating velocities were measured by use of a pulse coherent acoustic Doppler profiler (PC-ADP) and an acoustic Doppler velocimeter in the tidal bottom boundary layer of the Pearl River Estuary. The bed shear stresses were estimated by four different methods: log profile (LP), eddy correlation (EC), turbulent kinetic energy (TKE), and inertial dissipation (ID). The results show that (a) all four methods for estimating bed stresses have advantages and disadvantages, and they should be applied simultaneously to obtain reliable frictional velocity and to identify potential sources of errors; (b) the LP method was found to be the most suitable to estimate the bed stresses in non-stratified, quasi-steady, and homogeneous flows; and (c) in the estuary where the semi-diurnal tidal current is dominant, bed shear stresses exhibit a strong quarter-diurnal variation. 展开更多
关键词 bed shear stress bottom boundary layer PC-ADP Pearl River Estuary
下载PDF
Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling
8
作者 Kwang Seon Shin Lifei Wang +3 位作者 Mingzhe Bian Shihoon Choi Alexander Komissarov Viacheslav Bazhenov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2027-2041,共15页
Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear... Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear stress(CRSS)of slips and twinning in Mg single crystals.The duplex non-basal slip took place in the temperature range from 613 to 733 K when the single crystal samples were stretched along the<0110>direction.In contrast,the single basal slip and prismatic slip were mainly activated in the temperature range from RT to 733 K when the tensile directions were inclined at an angle of 45°with the basal and the prismatic plane,respectively.Viscoplastic self-consistent(VPSC)crystal modeling simulations with genetic algorithm code(GA-code)were carried out to obtain the best fitted CRSSs of major deformation modes,such as basal slip,prismatic slip,pyramidalⅡ,{1012}tensile twinning and{1011}compressive twinning when duplex slips accommodated deformation.Additionally,CRSSs of the basal and the prismatic slip were derived using the Schmid factor(SF)criterion when the single slip mainly accommodated deformation.From the CRSSs of major deformation modes obtained by the VPSC simulations and the SF calculations,the CRSSs for basal slip and{1012}tensile twinning were found to show a weak temperature dependence,whereas those for prismatic,slip and{1011}compressive twinning exhibited a strong temperature dependence.From the comparison of previous results,VPSC-GA modeling was proved to be an effective method to obtain the CRSSs of various deformation modes of Mg and its alloys. 展开更多
关键词 MAGNESIUM Single crystal Critical resolve shear stress SLIP TWINNING
下载PDF
Characterization of shear stresses in nickel-based superalloy Mar-M247 when orthogonal machining with coated carbide tools
9
作者 CHEN Shao-hsien SU Sen-chieh JEHNG Wern-dare 《Journal of Central South University》 SCIE EI CAS 2014年第3期862-869,共8页
Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytica... Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247. 展开更多
关键词 Mar-M247 tool wear orthogonal machining shear stress
下载PDF
Ferrofluid measurements of bottom velocities and shear stresses 被引量:1
10
作者 MUSUMECI Rosaria E. MARLETTA Vincenzo +2 位作者 ANDò Bruno BAGLIO Salvatore FOTI Enrico 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第1期150-158,共9页
A novel direct measurement strategy of bottom velocities and shear stresses based on the use of ferrofluids is presented. Such a strategy overcomes some of the limits of state-of-the-art instruments. A preliminary exp... A novel direct measurement strategy of bottom velocities and shear stresses based on the use of ferrofluids is presented. Such a strategy overcomes some of the limits of state-of-the-art instruments. A preliminary experimental campaign has been carried out in the presence of currents in steady flow conditions in order to test the effects of ferrofluid quantity and of the controlling permanent magnetic force. An alternating current (AC) circuit and a direct current (DC) conditioning circuit have been tested. For velocities larger than 0.05 m/s, the near-bottom velocity-output voltage calibration curve has a monotone parabolic shape. The sensitivity of the instrument is increased by a factor of 30 when the DC circuit is used. 展开更多
关键词 magnetofluids Rosensweig effect flow resistances bed shear stresses bottom velocities
原文传递
Cyclic shear behavior of en-echelon joints under constant normal stiffness conditions 被引量:1
11
作者 Bin Wang Yujing Jiang +3 位作者 Qiangyong Zhang Hongbin Chen Richeng Liu Yuanchao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3419-3436,共18页
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit... To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. 展开更多
关键词 En-echelon joint Cyclic shear tests shear stress Normal displacement Constant normal stiffness(CNS)
下载PDF
Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear 被引量:1
12
作者 Aixiang Wu Zhenqi Wang +3 位作者 Zhuen Ruan Raimund Bürger Shaoyong Wang Yi Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期862-876,共15页
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o... Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed. 展开更多
关键词 thickened tailings compression-shear coupling compressive yield stress shear yield stress CONCENTRATION
下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
13
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified shear Lag Model to Study the Influence of Thermal Residual stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites
下载PDF
Experimental and simulation study on shear stress-induced erythrocyte damage based on vortex oscillator
14
作者 Xu Mei Li-Pu Zhao +1 位作者 Lian Hou Ying-Ying Zhong 《Biomedical Engineering Communications》 2024年第1期23-30,共8页
Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dyn... Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dynamics simulation combined with hemolysis prediction models have been widely used to predict hemolysis.With the development of hemolysis prediction models,the new hemolysis prediction model requires more experimental data to verify.In addition,the difference of in vitro blood-shearing device also affect the accuracy of hemolysis prediction.Methods:To address these problems,a new in vitro blood-shearing device(vortex oscillator)was used to further verify the accuracy of the hemolysis prediction models,and to guide the optimal design of blood-contacting medical devices such as mechanical circulatory support devices.Firstly,the flow field information such as wall stress and velocity of the vortex oscillator under different speeds was analyzed.Secondly,different hemolysis prediction models were used to calculate hemolysis,and the predicted data was compared with the experimental data.Results and Conclusion:In this study,the flow field information inside the vortex oscillator at high rotational speeds was systematically investigated,and the prediction of hemolysis was carried out.The results showed that the predicted data of hemolysis was significantly different from the experimental data,which indicated that it was urgent to establish a standardized in vitro blood-shearing platform to provide a reference for accurate hemolysis prediction. 展开更多
关键词 CFD Hemolysis prediction model Vortex oscillator shear stress
下载PDF
Behavior of interfacial stresses between RC beams and GFRP sheets 被引量:3
15
作者 王文炜 李果 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期105-111,共7页
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC... Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results. 展开更多
关键词 glass fiber reinforced plastic (GFRP) strengthening reinforced concrete beam shear stress normal stress
下载PDF
A new analytical solution for calculation the displacement and shear stress of fully grouted rock bolts and numerical verifications 被引量:8
16
作者 Ghadimi Mostafa Shariar Koroush Jalalifar Hossein 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1073-1079,共7页
In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be imp... In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be improved by fully grouted rock bolt, offering properties optimal to the purpose and versatility in use. Investigations of load transfer between the bolt and grout indicate that the bolt profile shape and spacing play an important role in improving the shear strength between the bolt and the surrounding strata. This study proposes a new analytical solution for calculation displacement and shear stress in a fully encapsulated rock bolt in jointed rocks. The main characteristics of the analytical solution consider the bolt profile and jump plane under pull test conditions. The performance of the proposed analytical solution, for three types of different bolt profile configurations, is validated by ANSYS software. The results show there is a good agreement between analytical and numerical methods. Studies indicate that the rate of displacement and shear stress from the bolt to the rock exponentially decayed. This exponential reduction in displacement and shear stress are dependent on the bolt characteristics such as: rib height, rib spacing, rib width and grout thickness, material and joint properties. 展开更多
关键词 Fully grouted bolt Jointed rock DISPLACEMENT shear stress
下载PDF
Wall shear stress in intracranial aneurysms and adjacent arteries 被引量:6
17
作者 Fuyu Wang Bainan Xu +2 位作者 Zhenghui Sun Chen Wu Xiaojun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期1007-1015,共9页
Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations betwee... Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries. 展开更多
关键词 neural regeneration wall shear stress hemodynamic parameters intracranial aneurysm fluid-solidcoupled model growth formation CT angiography second reconstruction multiple aneurysms numerical simulation grants-supported paper NEUROREGENERATION
下载PDF
Research on Measurement of Bed Shear Stress Under Wave-Current Interaction 被引量:6
18
作者 徐华 夏云峰 +3 位作者 马炳和 郝思禹 张世钊 杜德军 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期589-598,共10页
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to researc... The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided. 展开更多
关键词 bed shear stress micro-nanotechnology thermal shearometer wave-current effect sediment movement
下载PDF
Wall shear stress in portal vein of cirrhotic patients with portal hypertension 被引量:6
19
作者 Wei Wei Yan-Song Pu +7 位作者 Xin-Kai Wang An Jiang Rui Zhou Yu Li Qiu-Juan Zhang Ya-Juan Wei Bin Chen Zong-Fang Li 《World Journal of Gastroenterology》 SCIE CAS 2017年第18期3279-3286,共8页
AIM To investigate wall shear stress(WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. METHODS Idealized portal vein(PV) system models were reconstructe... AIM To investigate wall shear stress(WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. METHODS Idealized portal vein(PV) system models were reconstructed with different angles of the PV-splenic vein(SV) and superior mesenteric vein(SMV)-SV. Patient-specific models were created according to enhanced computed tomography images. WSS was simulated by using a finite-element analyzer, regarding the blood as a Newtonian fluid and the vessel as a rigid wall. Analysis was carried out to compare the WSSin the portal hypertension group with that in healthy controls.RESULTS For the idealized models, WSS in the portal hypertension group(0-10 dyn/cm2) was significantly lower than that in the healthy controls(10-20 dyn/cm2), and low WSS area(0-1 dyn/cm2) only occurred in the left wall of the PV in the portal hypertension group. Different angles of PV-SV and SMV-SV had different effects on the magnitude and distribution of WSS, and low WSS area often occurred in smaller PV-SV angle and larger SMV-SV angle. In the patient-specific models, WSS in the cirrhotic patients with portal hypertension(10.13 ± 1.34 dyn/cm2) was also significantly lower than that in the healthy controls(P < 0.05). Low WSS area often occurred in the junction area of SV and SMV into the PV, in the area of the division of PV into left and right PV, and in the outer wall of the curving SV in the control group. In the cirrhotic patients with portal hypertension, the low WSS area extended to wider levels and the magnitude of WSS reached lower levels, thereby being more prone to disturbed flow occurrence.CONCLUSION Cirrhotic patients with portal hypertension show dramatic hemodynamic changes with lower WSS and greater potential for disturbed flow, representing a possible causative factor of PV thrombosis. 展开更多
关键词 Portal hypertension Wall shear stress Portal vein system DISTRIBUTION Disturbed flow
下载PDF
Mathematical Model and Experiment Validation of Fluid Torque by Shear Stress under Influence of Fluid Temperature in Hydro-viscous Clutch 被引量:6
20
作者 CUI Hongwei YAO Shouwen +2 位作者 YAN Qingdong FENG Shanshan LIU Qian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期32-40,共9页
The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicte... The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research. In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account, the test rig is designed. The outlet oil temperature is measured and fitted with different rotation speed, oil film thickness, oil flow rate, and inlet oil temperature. Meanwhile, the film torque can be obtained. Based on Navier-Stokes equations and the continuity equation, the mathematical model of fluid torque is proposed in cylindrical coordinate. Iterative method is employed to solve the equations. The radial and tangential speed distribution, radial pressure distribution and theoretical flow rate are determined and analyzed. The models of equivalent radius and fluid torque of friction pairs are introduced. The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc. However, the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed. The oil film fills the clearance and the film torque increases with increasing rotating speed. However, when the speed reaches a certain value, the centrifugal force will play an important role on the fluid distribution. The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow, so the film starts to shrink which decreases the film torque sharply. The theoretical fluid torque has good agreement with the experimental data. This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately. 展开更多
关键词 hydro-viscous clutch fluid torque by shear stress experiment validation mathematical model
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部