期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Analysis of thermal management and anti-mechanical abuse of multi-functional battery modules based on magneto-sensitive shear thickening fluid
1
作者 Yang XIONG Bo LU +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期529-542,共14页
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann... Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design. 展开更多
关键词 magneto-sensitive shear thickening fluid(MSTF) battery module impact protection temperature control integrated design
下载PDF
Shear Thickening Fluids Based on Additives with Different Concentrations and Molecular Chain Lengths 被引量:10
2
作者 徐钰蕾 龚兴龙 +3 位作者 彭超 孙英强 江万权 张忠 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期342-346,I0002,共6页
Shear thickening fluids (STFs) based on additives with different concentrations and molecular chain lengths were investigated. STF samples were prepared with silica and additive dispersed in polyethylene glycol (PE... Shear thickening fluids (STFs) based on additives with different concentrations and molecular chain lengths were investigated. STF samples were prepared with silica and additive dispersed in polyethylene glycol (PEG) 400, where three types of additives with different molecular chain lengths of PEG4000, PEG6000, and PEG10000 were used. For PEG10000, different concentrations, including 0, 1%, 3%, and 5%, were selected to study the influences of additive concentrations. Rheological properties of the samples were measured with a rheometer. The results show that the shear thickening effect was significantly enhanced with the increase of the concentration and the molecular chain length of additives. The mechanism of enhancement was quantitatively explained with the formation of large particles clusters. 展开更多
关键词 shear thickening fluid ADDITIVE Polyethylene glycol CONCENTRATION Molecular chain length
下载PDF
An experimental study on ballistic impact response of jute reinforced polyethylene glycol and nano silica based shear thickening fluid composite 被引量:1
3
作者 Vishwas Mahesh Dineshkumar Harursampath Vinyas Mahesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期401-409,共9页
The present study aims at assessing the ballistic impact behaviour of jute reinforced polyethylene glycol(PEG)and nano silica based shear thickening fluid(STF).Preparation of STF is achieved by dispersing the nano sil... The present study aims at assessing the ballistic impact behaviour of jute reinforced polyethylene glycol(PEG)and nano silica based shear thickening fluid(STF).Preparation of STF is achieved by dispersing the nano silica particles at different weight percentage loadings of 10%,20%,30%and 40%in PEG and the effect of various weight percentages loading of nano silica particles on ballistic performance of the proposed composites is studied experimentally.Rheological studies of the prepared STF’s showed that at all nanosilica loading shear thickening occurred and also the shear thickening was highest at higher loading of nano silica at lower rate of shear.The study reveals that the ballistic performance of the jute fabric is enhanced with impregnation of STF.The ballistic results indicate that energy absorption of the proposed composites is enhanced with increased loading of nano silica particles and at the same time,the effect of STF was reduced.Specific energy absorption(SEA)of the neat fabric and the proposed composites was made use of for the purpose of comparing the energy absorption capabilities.It is found that the SEA of proposed composites with 10%nano silica loading is lesser than the neat fabric both in case of 3 layers and 6 layers.It was also found that proposed composite with 40%nano silica loading exhibits highest SEA compared to neat fabric and its counterparts with its SEA being 3.21 and 3.76 times highest compared to three and six layers of neat fabrics respectively. 展开更多
关键词 Ballistic impact shear thickening fluid Nano silica JUTE
下载PDF
Cutting edge preparation of microdrills by shear thickening polishing for improved hole quality in electronic PCBs
4
作者 Jiahuan WANG Mingfeng KE +7 位作者 Jiepei LIAO Yu ZHOU Saurav GOEL Jaya VERMA Xu WANG Weigang GUO Julong YUAN Binghai LYU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第2期99-107,共9页
Printed circuit boards(PCBs)are representative composite materials,and their high-quality drilling machining remains a persistent challenge in the industry.The finishing of the cutting edge of a microdrill is crucial ... Printed circuit boards(PCBs)are representative composite materials,and their high-quality drilling machining remains a persistent challenge in the industry.The finishing of the cutting edge of a microdrill is crucial to drill performance in machining fine-quality holes with a prolonged tool life.The miniature size involving submicron scale geometric dimensions,a complex flute shape,and low fracture toughness makes the cutting edge of microdrills susceptible to breakage and has been the primary limiting factor in edge preparation for microdrills.In this study,a newly developed cutting edge preparation method for microdrills was tested experimentally on electronic printed circuit boards.The proposed method,namely,shear thickening polishing,limited the cutting edge burrs and chipping on the cutting edge,and this in turn transformed the cutting edge’s radius from being sharp to smooth.Moreover,the edge–edge radius could be regulated by adjusting the processing time.PCB drilling experiments were conducted to investigate the influence of different cutting edge radii on wear,hole position accuracy,nail head value,and hole wall roughness.The proposed approach showed 20%enhancement in hole position accuracy,33%reduction in the nail head value,and 19%reduction in hole wall roughness compared with the original microdrill.However,a threshold is needed;without it,excessive shear thickening polishing will result in a blunt edge,which may accelerate the wear of the microdrill.Wear was identified as the primary factor that reduced hole quality.The study indicates that in printed circuit board machining,microdrills should effectively eliminate grinding defects and maintain the sharpness of the cutting edge as much as possible to obtain excellent drilling quality.Overall,shear thickening polishing is a promising method for cutting edge preparation of microdrills.Further research and optimization can lead to additional improvements in microdrill performance and contribute to the continued advancement of printed circuit board manufacturing. 展开更多
关键词 microdrill shear thickening polishing cutting edge preparation electronic printed circuit boards hole quality
原文传递
On Free Boundary Problem for the Non-Newtonian Shear Thickening Fluids
5
作者 WANG Shu YUAN Fang 《Journal of Partial Differential Equations》 CSCD 2021年第1期14-41,共28页
The aim of this paper is to explore the free boundary problem for the NonNewtonian shear thickening fluids.These fluids not only have vacuum,but also have strong nonlinear properties.In this paper,a class of approxima... The aim of this paper is to explore the free boundary problem for the NonNewtonian shear thickening fluids.These fluids not only have vacuum,but also have strong nonlinear properties.In this paper,a class of approximate solutions is first constructed,and some uniform estimates are obtained for these approximate solutions.Finally,the existence of free boundary problem solutions is proved by these uniform estimates. 展开更多
关键词 On free boundary problem the non-Newtonian shear thickening fluids VACUUM
原文传递
Mechanical response of encapsulated shear thickening fluid
6
作者 Xin Zhang He Zhang Jinglei Yang 《实验力学》 CSCD 北大核心 2017年第5期627-633,共7页
In this investigation,the hard-to-handle shear thickening fluid(STF)is successfully encapsulated for easy handling and re-processing in the application of promising impact resistant material.Double-walled macroscopic ... In this investigation,the hard-to-handle shear thickening fluid(STF)is successfully encapsulated for easy handling and re-processing in the application of promising impact resistant material.Double-walled macroscopic STF capsules are synthesized using a convenient process by instilling the diluted STF droplets into reaction solution.The obtained STF capsules show significant shear thickening response to dynamic impact in comparison to quasistatic compression in terms of 154 times higher absorbed nominal strain energy.This innovative method opens a new window to design and manufacture versatile impact resistant materials and structures. 展开更多
关键词 shear thickening fluid(STF) ENCAPSULATION impact resistance energy absorption
原文传递
Giant Rheological Effect of Shear Thickening Suspension Comprising Silica Nanoparticles with No Aggregation
7
作者 Shuangbing Li Jixiao Wang +3 位作者 Song Zhao Wei Cai Zhi Wang Shichang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期261-265,共5页
The spherical silica particles in narrow size distribution with different diameters of 90 nm, 200 nm, 320 nm and 400 nm were prepared by the modified St?ber method and characterized by scanning electron microscopy(... The spherical silica particles in narrow size distribution with different diameters of 90 nm, 200 nm, 320 nm and 400 nm were prepared by the modified St?ber method and characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and dynamic light scattering(DLS). The phase composition of particles was characterized by X-ray diffraction. The results indicated that each of the silica particle samples was in amorphous state. The shear thickening fluids(STFs) comprising 53 vol.%of silica particles and 47 vol.% of polyethylene glycol with molecular weight of 200 g mol^(-1)(PEG200) were prepared and evaluated. The influence of size and size distribution on the critical shear rate and the intensity of shear thickening were analyzed. The STFs prepared by silica nanoparticles with a diameter of90 nm showed the giant rheological effect with the critical shear rate of 2.51 s^(-1), the largest viscosity of45,500 Pa·s and the yield stress of 181 kPa. The experiments and the analysis results demonstrated that the suspensions prepared by nanoparticles have high intensity of shear thickening. 展开更多
关键词 shear thickening Silica nanoparticle Size distribution Rheology
原文传递
Experimental study of solid-liquid origami composite structures with improved impact resistance
8
作者 Shuheng Wang Zhanyu Wang +5 位作者 Bei Wang Zhi Liu Yunzhu Ni Wuxing Lai Shan Jiang Yong An Huang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期118-123,共6页
In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and... In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and fabricated,namely air,water,and shear thickening fluid(STF).Quasi-static compression and drop-weight impact experiments were carried out to compare and reveal the static and dynamic mechanical behavior of these structures.The results from drop-weight impact experiments demonstrated that the solid-liquid Kresling origami composite structures exhibited superior yield strength and reduced peak force when compared to their empty counterparts.Notably,the Kresling origami structures filled with STF exhibited significantly heightened yield strength and reduced peak force.For example,at an impact velocity of 3 m/s,the yield strength of single-layer STF-filled Kresling origami structures increased by 772.7%and the peak force decreased by 68.6%.This liquid-solid origami composite design holds the potential to advance the application of origami structures in critical areas such as aerospace,intelligent protection and other important fields.The demonstrated improvements in impact resistance underscore the practical viability of this approach in enhancing structural performance for a range of applications. 展开更多
关键词 Solid-liquid design Origami structure Impact resistance shear thickening fluid
下载PDF
Non-linear Viscoelastic Rheological Properties of PCC/PEG Suspensions 被引量:5
9
作者 Hai-lin Yang Jian-ming Ruan +3 位作者 Jian-peng Zou Qiu-mei Wu Zhong-cheng Zhou Yuan-yan Xie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期46-50,共5页
The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the com... The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the complex viscosity was initially independent of stress amplitude and obvious shear thinning occurred, then dramatic shear thickening took place after reaching the minimum viscosity. Typically, in a constant frequency of 5 rad/s, the elastic modulus, viscous modulus, and tanδ (δ is the out-of-phase angle) vs. the stress amplitude was investigated. It is found that the elastic modulus initially appeared to be independent of stress amplitude and then exhibited a rapid decrease, but the viscous modulus was independent of amplitude stress at lower amplitude stress. After reaching the minimum value the viscous modulus showed a rapid increase. On the other hand, tanδ increased from 0.6 to 92, which indicates that the transition from elastic to viscous had taken place and tanδ showed a steep increase when shear thickening occurred. Lissajous plots are shown for the dissipated energy vs. different maximum stress amplitude in the shear thinning and shear thickening regions. The relationship of dissipated energy vs. maximum stress amplitude was determined, which follows a power law. In the shear thinning region the exponent was 1.91, but it steeply increases to 3.97 in the shear thickening region. 展开更多
关键词 Precipitated calcium carbonate SUSPENSION shear thickening Dynamic oscillatory shear Rheological response
下载PDF
Anhydrous based shear-thickening polishing of KDP crystal 被引量:1
10
作者 Min LI Minghui LIU +2 位作者 Oltmann RIEMER Fangzeng SONG Binghai LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第6期90-99,共10页
Based on the special physical–chemical characteristics of optical crystal in the field of aeronautics,a new anhydrous based shear-thickening polishing(ASTP)method has been proposed to restrain deliquescence and to im... Based on the special physical–chemical characteristics of optical crystal in the field of aeronautics,a new anhydrous based shear-thickening polishing(ASTP)method has been proposed to restrain deliquescence and to improve physical properties for KDP machining.The ultraprecision polishing of KDP crystal is completed by ASTP.A kind of anhydrous based thickening polishing slurry(ATPS)was proposed in our work,and high-performance rheological properties were determined to achieve the ASTP of KDP crystal.A material removal model of ASTP in KDP machining is established,followed by the verification experiment of the prediction model.The maximum error of the predictive model is only 9.8%,which proves the validity of the material removal model for KDP polishing.The polishing experiments were carried out on the polishing platform developed by ourselves.The results show that the new polishing method can polish20 mm×20 mm×5 mm KDP crystal and obtain a super-smooth surface with a surface roughness of 1.37 nm and high shape accuracy.The surface accuracy of polished KDP crystal reaches up to0.68 k(RMS).The experimental results show that the ASTP is a potential ultra-precision machining method for KDP crystal. 展开更多
关键词 CRYSTALS KDP POLISHING shear thickening SURFACE Ultra-precision machining
原文传递
Viscoelastic properties of monodisperse spherical silica suspension 被引量:1
11
作者 伍秋美 阮建明 +2 位作者 黄伯云 周忠诚 邹俭鹏 《Journal of Central South University of Technology》 EI 2007年第6期737-741,共5页
The viscoelastic properties of the suspension of monodisperse spherical silica produced by hydrolysis of tetraethoxysilane in alcohol solvent with ammonia as a catalyst in polyethylene glycol (PEG) were studied. The... The viscoelastic properties of the suspension of monodisperse spherical silica produced by hydrolysis of tetraethoxysilane in alcohol solvent with ammonia as a catalyst in polyethylene glycol (PEG) were studied. The results show that the SiO2/PEG suspension possesses the reversible shear thinning and shear thickening behaviors. In the shear thinning region, the loss modulus (G") almost remains unchanged, whereas the storage modulus (G') decreases. In the shear thickening region, G" and G' increase for the formation of the "clusters". The larger G" over G' in all the stress studied shows that the system mainly possesses the viscous property, and that the energy dissipated(Ed) is larger than that stored. Ed of this suspension is proportional to the maximum strain (Tmax) rising with the exponent of 1.92 under low shear stress; however, in the shear thickening region, Ed is proportional to γ max rising with the exponent of 5.00. 展开更多
关键词 VISCOELASTICITY monodisperse silica SUSPENSION shear thickening
下载PDF
SELF-ASSEMBLING AMPHIPHILIC POLYELECTROLYTES AND THEIR NANOSTRUCTURES
12
作者 Yotaro Morishima 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第4期323-336,共14页
The self-assembling behavior of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS)and hydrophobic comonomers possessing dodecyl groups linked by various spacer bonds was discussed with a focus ... The self-assembling behavior of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS)and hydrophobic comonomers possessing dodecyl groups linked by various spacer bonds was discussed with a focus on theeffect of the spacer. The characterization of association behavior of such polymers in water using quasielastic light scattering,capillary electrophoresis, NMR relaxation, various fluorescence, and viscoelastic methods was described. These copolymersform a variety of self-assembled nanostructures depending on the type of the spacer. Random copolymers of AMPS and N-dodecylmethacrylamide show a strong preference for intrapolymer self-association even in concentrated aqueous solutionsforming single-macromolecular self-assemblies (unimolecular micelles). In contrast, random copolymers of AMPS anddodecyl methacrylate are prone to undergo interpolymer associations yielding multipolymer micelles. In random copolymersof AMPS and a methacrylate substituted a nonionic surfactant (HO(CH_2CH_2O)_(25)C_(12)H_(25)) (C_(12)E_(25)), dodecyl groups are muchless restricted by the polymer backbone because they are linked via a long, flexible hydrophilic spacer. Thus, the polymer-bound C_(12)E_(25) surfactant moieties form micelles similar to those formed by discrete surfactants, but they are bridged bypolymer chains forming a network structure. 展开更多
关键词 SELF-ASSEMBLIES Hydrophobically-modified polyelectrolytes NANOSTRUCTURES Hydrophobic association Unimolecular micelles Multipolymer micelles Transient network VISCOELASTICITY shear thickening shear thinning
下载PDF
Rheological behavior of semi-solid TiB_2 reinforced Al composite
13
作者 S.THADELA B.MANDAL +3 位作者 P.DAS H.ROY A.K.LOHAR S.K.SAMANTA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2827-2832,共6页
The rheological behavior of the semi-solid Ti B2 reinforced Al-Mg alloy composite slurry was investigated,which is required for the mould filling simulations during the semi-solid processing.Ti B2 reinforced in-situ A... The rheological behavior of the semi-solid Ti B2 reinforced Al-Mg alloy composite slurry was investigated,which is required for the mould filling simulations during the semi-solid processing.Ti B2 reinforced in-situ Al-Mg alloy composite samples were remelted and subsequently brought to the semi-solid temperature regime within the heating chamber of a Searle type rheometer.In order to understand the rheological behavior of composites,three different types of experiment were carried out,namely,steady state test,continuous cooling test and isothermal test.Apart from that,the thixotropic nature of the slurry was confirmed from the obtained hysteresis loops during the experimentation.The results indicate that when isothermally held,the composite slurry exhibits pseudo-plasticity and shows shear-thinning behavior up to the shear rate of 1300 s^-1,and at higher shear rates(1300 s^-1),it shows a shear thickening tendency,which is probably due to the agglomeration of non-deformable nano-Ti B2 particles.The pseudo-plastic behavior of the slurry was also estimated employing intermittent step changes of shear rate(shear jump test). 展开更多
关键词 RHEOLOGY shear thinning in-situ nano-Ti B2 THIXOTROPY shear thickening
下载PDF
Signatures of shear thinning-thickening transition in steady shear flows of dense non-Brownian yield stress systems
14
作者 Wen Zheng Yu Shi Ning Xu 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第6期1013-1020,共8页
Steady shear flows of dense athermal systems composed of soft disks are investigated via non-equilibrium molecular dynamics simulations, from which we sort out links among the structure, dynamics, and shear rheology. ... Steady shear flows of dense athermal systems composed of soft disks are investigated via non-equilibrium molecular dynamics simulations, from which we sort out links among the structure, dynamics, and shear rheology. The systems at rest are jammed packings of frictionless disks with a nonzero yield stress. Driven by low shear rates, the flows shear thin due to the presence of the nonzero yield stress, but transit to shear thickening above a crossover shear rate γc - At γc, we observe the strongest struc- tural anisotropy in the pair distribution function, which serves as the structural signature of the shear thinning-thickening tran- sition. We also observe dynamical signatures associated with the transition: At γc , scaling behaviors of both the mean squared displacement and relaxation time undergo apparent changes. By performing a simple energy analysis, we reveal an underlying condition for the shear thickening to occur: d(lnTg)/d(Inγ) 〉 2 with Tg the kinetic temperature. This condition is confirmed by simulations. 展开更多
关键词 shear thickening shear thinning structural anisotropy dynamics kinetic temperature
原文传递
Dynamic impact protective body armour:A comprehensive appraisal on panel engineering design and its prospective materials
15
作者 Mulat Alubel Abtew François Boussu Pascal Bruniaux 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期2027-2049,共23页
Personal body armour is one of the most important pieces of equipment to protect human beings from various critical and fatal injuries.In today’s modern world,various organizations including law enforcement and secur... Personal body armour is one of the most important pieces of equipment to protect human beings from various critical and fatal injuries.In today’s modern world,various organizations including law enforcement and security service have made it mandatory for their personnel to wear personal protection system while on field duty.However,the systems should comprise an improved ballistic performance,light-weighted,flexible as well as comfortable panel not only to be accepted with a wider range but also for effective performances of the consumer.Generally,the overall performances of the protective body armour could be affected by various parameters including armour design techniques,type of materials used and finishing of the panels.The current paper aims to critically review state-of-art for armour panel design techniques and the different perspective body armour materials.The paper starts by discussing the different body armour and its category.Later,the different states of technology for armour panel design(mostly for women),its problems and the possible solutions will be cited.Later,the commonly used different polymeric fibrous and the future possible advanced materials including carbon nanotube(CNT),Graphene CNT and shear thickening fluids(STFs)treated materials for developing the reinforced body armour panel will be discussed.The authors believe that this paper will enlighten useful guidelines and procedures about the different panel design techniques and current and promising future materials for researchers,designers,engineers and manufacturers working on the impact resistance body armour field. 展开更多
关键词 Body armour panel design Ballistic impact behaviours NANOCOMPOSITES shear thickening fluids(STFs) MILITARY
下载PDF
Improving the Stab-Resistance Performance of Ultra High Molecular Weight Polyethylene Fabric Intercalated with Nano-Silica-Fluid 被引量:2
16
作者 顾隽 黄献聪 +3 位作者 李焱 王新灵 施楣梧 郑震 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第1期102-109,共8页
High performance fibers impregnated by shear thickening fluids(STFs) have been recognized as a kind of latent stab-resistant materials. In our work, the rheological properties of various nano-silica particles in diffi... High performance fibers impregnated by shear thickening fluids(STFs) have been recognized as a kind of latent stab-resistant materials. In our work, the rheological properties of various nano-silica particles in diffierent carriers were first investigated, some of which showed the typical characteristic of shear thickening phenomena.And then, the effiects of add-on and surface hydrophilicity of silica particles, the type and concentration of the carriers were discussed in detail. It was found that the systems of hydrophilic silica in ethylene glycol, butylenes glycol and polyethylene glycol(PEG) demonstrated shear thickening; moreover, the reversibility of rheological behaviors of hydrophilic silica-PEG300 suspensions indicated energy dissipation existed within a circulation of shear stress. Furthermore, the detail mechanism of STF based nano-silica particles was explored and a process diagram was presented. Finally, the stab-resistance and morphology of cutting edge of ultra high molecular weight polyethylene(UHMWPE) fabric impregnated STF composites were investigated and the results were analyzed.The higher silica add-on was benefit to the improvement of the stab resistance of the composites. 展开更多
关键词 nanoparticle ultra high molecular weight polyethylene(UHMWPE) composite shear thickening stab-resistance
原文传递
Heat Transfer Analysis of MHD Power Law Nano Fluid Flow through Annular Sector Duct
17
作者 AHMED Farhan IQBAL Mazhar 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第1期169-181,共13页
Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu an... Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper. 展开更多
关键词 electrically conducting power law nano fluid Cu nano particles TiO2 nano particles shear thickening fluid shear thinning fluid heat transfer rate friction factor
原文传递
Design and performance study of a segmented intelligent isolation bearing
18
作者 Guo-Jun Yu Xi-Xi Wen +2 位作者 Cheng-Bin Du Ling-Yun Wang Shao-Jie Zhu 《International Journal of Smart and Nano Materials》 SCIE EI 2021年第4期511-532,共22页
In this paper,a novel type of isolator,named segmented intelligent isolation bearing(SIIB),is designed and manufactured,which can meet the requirements of seismic fortification under three seismic intensities,i.e.freq... In this paper,a novel type of isolator,named segmented intelligent isolation bearing(SIIB),is designed and manufactured,which can meet the requirements of seismic fortification under three seismic intensities,i.e.frequent intensity,basic intensity,and rare intensity.A theoretical formula for the output of the SIIB is established to provide a basis for the determination of the size of the SIIB.MRE and STMP used in SIIB were prepared,of which the changes of shear storage modulus and damping factor with the magnetic field under different strain are analyzed.The mechanical properties of the SIIB under small displacement,medium displacement,and large displacement are tested,respectively,and the hysteretic characteristics of force–displacement are analyzed.The dynamic mechanical model combining the rheological model,phenomenological model,and bilinear restoring force model is established to represent the behavior of the SIIB.The results showed that the theoretical results agree well with the experimental results,and the model can significantly reflect the dynamic characteristics of SIIB. 展开更多
关键词 ISOLATION magnetorheological elastomer(MRE) shear thickening magnetorheological plastics(STMP) performance analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部