The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion o...The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.展开更多
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and...A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.展开更多
Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in a...Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.展开更多
基金support from the State Key Research"973"Plan of China(No. 2009CB421001)National Natural Science Foundation of China(40872139)+1 种基金the 111 Project(B07011) of the Ministry of Education,State Key Laboratory of Geological Processes and Mineral Resources (GPMR200837)the Fundamental Research Funds for the Central Universities(GPMR2009PY01)
文摘The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.
文摘A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
基金Project(2014XT01)supported by Research Funds for the Central Universities,ChinaProject(51034005)supported by the National Natural Science Foundation of China+1 种基金Project(2012AA062004)supported by High-Tech Research and Development Program of China(863 Program)Project(NCET-13-1022)supported by the Program for New Century Excellent Talents in University,China
文摘Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.