期刊文献+
共找到3,196篇文章
< 1 2 160 >
每页显示 20 50 100
Thermal-hydro-mechanical coupling stress intensity factor of brittle rock 被引量:3
1
作者 李鹏 饶秋华 +1 位作者 李卓 敬静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期499-508,共10页
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi... A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula. 展开更多
关键词 stress intensity factor thermal-hydro-mechanical coupling boundary collocation method fracture mechanism brittle rock
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:2
2
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear 被引量:1
3
作者 Aixiang Wu Zhenqi Wang +3 位作者 Zhuen Ruan Raimund Bürger Shaoyong Wang Yi Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期862-876,共15页
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o... Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed. 展开更多
关键词 thickened tailings compression-shear coupling compressive yield stress shear yield stress CONCENTRATION
下载PDF
Crustal stress field in Yunnan: implication for crust-mantle coupling 被引量:25
4
作者 Zhigang Xu Zhouchuan Huang +6 位作者 Liangshu Wang Mingjie Xu Zhifeng Ding Pan Wang Ning Mi Dayong Yu Hua Li 《Earthquake Science》 CSCD 2016年第2期105-115,共11页
We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous r... We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere. 展开更多
关键词 TIBET YUNNAN Focal mechanism solution stress field Crust-mantle coupling
下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:24
5
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
下载PDF
Development of multi-functional anchorage support dynamic-static coupling performance test system and its application
6
作者 Qi Wang Shuo Xu +4 位作者 Bei Jiang Chong Zhang Zhe Sun Jingxuan Liu Cailin Jiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期339-349,共11页
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses... In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system. 展开更多
关键词 Anchorage support system Development of test system Dynamic-static coupling test Combined stress
下载PDF
Stress Path Analysis of Deep-Sea Sediments Under the Compression-Shear Coupling Load of Crawler Collectors 被引量:1
7
作者 ZHANG Ning MA Ning +2 位作者 YIN Shiyang CHEN Xuguang SONG Yuheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期65-74,共10页
The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression ... The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression load and a horizontal shear load.Then,the internal stress state of sedimentary soil is examined through a theoretical calculation and finite element numerical simulation.Finally,the driving of crawlers is simulated by changing the relative spatial position between the load and stress unit,obtaining the stress path of the soil unit.Based on the calculation results,the effect of the horizontal shear load on the soil stress response is analyzed at different depths,and the spatial variation law of the soil stress path is examined.The results demonstrate that the horizontal shear load has a significant effect on the rotation of the principal stress,and the reverse rotation of the principal stress axis becomes obvious with the increase in the burial depth.The stress path curve of the soil is different at various depths.The spatial variation rule of the stress path of the shallow soil is complex,whereas the stress path curve of the deep soil tends to shrink as the depth increases.The stress path of the corresponding depth should be selected according to the actual research purpose and applied to the laboratory test. 展开更多
关键词 deep-sea sediment crawler collector compression-shear coupling load stress path principal stress axis direction
下载PDF
Pore pressure fluctuations of overlying aquifer during residual coal mining and water-soil stress coupling analysis 被引量:1
8
作者 DONG Qing-hong SUI Wang-hua +1 位作者 ZHANG Xiao-cui MAO Zeng-min 《Mining Science and Technology》 EI CAS 2009年第5期648-652,共5页
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. ... Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face. 展开更多
关键词 pore pressure fluctuations water-soil stress coupling analysis residual coal mining
下载PDF
STUDY ON COUPLING MODEL OF (SEEPAGE-FIELD) AND STRESS-FIELD FOR ROLLED CONTROL CONCRETE DAM 被引量:6
9
作者 顾冲时 苏怀智 周红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第3期355-363,共9页
Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters.... Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field. 展开更多
关键词 rolled control concrete dam (RCCD) interface seepage-field stress-field coupling analysis
下载PDF
COUPLING OF ASSUMED STRESS FINITE ELEMENT AND BOUNDARY ELEMENT METHODS WITH STRESS-TRACTION EQUILIBRIUM
10
作者 GUZELBEY IbrahimH. KANBER Bahattin AKPOLAT Abdullah 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第1期76-81,共6页
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the ... In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling. 展开更多
关键词 coupling assumed stress FEM BEM stress-traction equilibrium
下载PDF
Analysis of stress-magnetic coupling effect in weak magnetic environment
11
作者 邱忠超 张卫民 +1 位作者 果艳 DUBOV A A 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期471-477,共7页
Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper ... Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper by placing the excitation device which generates a weak external magnetic field about 100 A/re. The effect of the external magnetic field on the magnetic signals is studied using both finite element method (FEM) and uniaxial tensile tests. Comparison of the test data with the simulation ones of stress-magnetic coupling shows that the magnetic signals are strengthened and the measurement sensitivity of the detection system is greatly improved through the external magnetic excitation. Moreover, the FEM result has a good agreement with the testing results of No. 20 steel plate. The proposed method has laid a foundation for further practical engineering application. 展开更多
关键词 stress-magnetic coupling metal magnetic memory stress concentration finite elementanalysis measurement sensitivity
下载PDF
ATheoretical and Applied Study of Seepage under Coupling Between Seepage Field and Stress Field
12
作者 黄涛 杨立中 寇川 《Journal of Modern Transportation》 1999年第2期181-189,共9页
In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this prob... In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given. 展开更多
关键词 SEEPAGE stress coupling mathematical model
下载PDF
AIR-SEA COUPLING MODES OF TROPICAL PACIFIC SSTA AND WIND STRESS FIELDS
13
作者 张勤 蒋贤安 何金海 《Journal of Tropical Meteorology》 SCIE 1996年第2期129-136,共8页
The EOF thechnique is employed to investigate the characteristic modes of spatial distribution and features of temporal variation in the context of 1970-1989 wind stress and SSTA datasets over the tropical Pacific. Re... The EOF thechnique is employed to investigate the characteristic modes of spatial distribution and features of temporal variation in the context of 1970-1989 wind stress and SSTA datasets over the tropical Pacific. Results show similar variation in the time coefficients of the first eigenvectors for the wind stress and SSTA fields, revealing air-sea interaction and coupling at the multiple space/time scales,which are in fairly good correspondence to the E1 Nino cycle. 展开更多
关键词 WIND stress SST AIR-SEA coupling interaction
下载PDF
Coupling characteristics of stress and strain at different layers of different sub-regions in Yunnan and its adjacent areas
14
作者 马宏生 张国民 +4 位作者 刘杰 江在森 华卫 王辉 王新岭 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第2期133-146,共14页
In this paper, we collect 6 361 waveform data to calculate the shear wave splitting parameters from a regional seismic network of 22 digital stations in Yunnan and its adjacent area from July 1999 to June 2005. By usi... In this paper, we collect 6 361 waveform data to calculate the shear wave splitting parameters from a regional seismic network of 22 digital stations in Yunnan and its adjacent area from July 1999 to June 2005. By using the cross-correlation method, 64 splitting events of 16 stations are processed. We also collect the splitting results of eight earthquake sequences to present the characteristics of shear wave splitting in Yunnan and its adjacent areas. The orientations of maximum principal compressive stress of three sub-regions in this area are derived from the CMT focal mechanism solutions of 43 moderate-strong earthquakes provided by Harvard University by the P axis azimuth-averaging method. The principal strain rate at each observatory is deduced from the observations of Crustal Movement Observation Network of China during the period from 1999 to 2004. In addition, the data of Pn aniso- tropy and SKS splitting of Yunnan and its adjacent areas are also collected. We have discovered from this study that the continental lithosphere, as a main seismogenic environment for strong earthquake, can be divided into blocks laterally; the mechanical behavior of lithosphere varies with depth and can be divided into different layers in the vertical orientation; the information of crustal deformation obtained from GPS might be affected by the type of blocks, since there are different types of active blocks in Yunnan and its adjacent areas; the shear wave splitting in this region might be affected mainly by the upper crust or even the surface tectonics. 展开更多
关键词 Yunnan and its adjacent areas shear wave splitting continental lithosphere stress and strain coupling of different layers
下载PDF
A new model for the expansion tube considering the stress coupling:Theory,experiments and simulations
15
作者 M.Z.Wu X.W.Zhang Q.M.Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1190-1204,共15页
Based on the two-arc profile assumption,the expansion deformation and energy absorption of circular tubes compressed by conical-cylindrical dies were reconsidered.First,the deformation of the two arcs was analyzed ind... Based on the two-arc profile assumption,the expansion deformation and energy absorption of circular tubes compressed by conical-cylindrical dies were reconsidered.First,the deformation of the two arcs was analyzed independently and an improved model denoted as Model-I was established.Then,by further involving the coupling between the bending moment and membrane forces,a more elaborate model,i.e.,Model-II was developed.Afterwards,experiments and simulations were conducted to verify the models,which show that,compared with previous theoretical models,Model-II could not only capture the prominent features of the deformation,but also improve the prediction accuracy of the steady driving force significantly.By means of this model,it was found that the critical semi-conical angle,which makes the driving force minimum,increases with the increase of the friction coefficient,expansion ratio as well as the radius/thickness ratio of the tube.And,the energy dissipation due to stretching is always greater than that of bending,while the friction dissipation can account for the largest proportion at small semi-conical angle or large friction coefficient.At a certain friction and die conditions,the specific energy absorption of expanded tubes can be much higher than that under progressive collapse mode. 展开更多
关键词 EXPANSION Circular tube stress coupling Strain hardening Energy absorption
下载PDF
Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
16
作者 许之磊 高国强 +6 位作者 钱鹏宇 肖嵩 魏文赋 杨泽锋 董克亮 马亚光 吴广宁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期493-503,共11页
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ... The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas. 展开更多
关键词 pantograph-catenary arc low pressure multi-field stress coupling model arc column drift
下载PDF
SOLUTION TO THE STRESS DISTRIBUTION ON THE SURFACE LAYER OF BUSHING ALLOY BY COUPLING BEM WITH ELASTICITY METHOD
17
作者 范迅 孟惠荣 《Journal of China University of Mining and Technology》 1994年第2期32-38,共7页
In the design of the fatigue strength of dynamically loaded bearing in the equipmentssuch as internal combustion engines and roimg mun, the solution to the stress distribution on thebushing alloy layer is an important... In the design of the fatigue strength of dynamically loaded bearing in the equipmentssuch as internal combustion engines and roimg mun, the solution to the stress distribution on thebushing alloy layer is an important and difficult problem. In this paper, a new method has beenproposed by coupling BEM with etheticity method, The algorithm and its implementation were deseribed in details The calculation results verify that this up-dated method can provide us a moresimple and effective tool for solvingthe fatigue stress of the bushing alloy with tangible benefit oftime-saving and high computation accuraey. It may open a new vista in bearing fatigue strength design. 展开更多
关键词 journal bearing alloy layer stress boundary element method coupling solution
下载PDF
Effects of the Spatial Coupling of Water and Fertilizer on the Chlorophyll Fluorescence Parameters of Winter Wheat Leaves 被引量:7
18
作者 SHEN Yu-fang LI Shi-qing 《Agricultural Sciences in China》 CAS CSCD 2011年第12期1923-1931,共9页
Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of... Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of water, nitrogen, and phosphorus on the kinetic parameters of chlorophyll fluorescence in winter wheat. The wheat was grown in layered columns of Eum-Orthic Anthrosol (Cinnamon soil), with the water content and nutrient composition of each layer controlled. The results showed that the kinetic parameters of chlorophyll fluorescence were sensitive to water stress. The basic fluorescence (F0) of leaves was higher in the dry treatment (0-30 cm layer at 40-45% of field capacity, 30-90 cm at 75-80% of field capacity) compared to the wet treatment (entire soil column at 75-80% of field capacity). The maximal fluorescence (Fm), the variable fluorescence (Fv), the photochemical efficiency (Fv/Fm) and potential activites (Fv/F0) of photosystem 2 (PS2) were significantly lower in the dry treatment. Although drought stress impaired PS2 function, this effect was significantly ameliorated by applying P or NP fertilizer, but not N alone. P application increased FJFm, both in well-watered and water stressed plants, especially when fertilizer was applied throughout the column or within the top 30 em of soil. A combined fertilizer improved photosynthesis in well watered plants, with Fm and F,fFm being the highest when fertilizer was applied throughout the columns. For drought stressed, plants FJFm was significantly greater when combined fertilizer was added within the top 30 cm of soil. We concluded that, when growing winter wheat in both arid and semi-arid parts of the Loess region of China, it is important to guarantee the nutrient supply in the top 30 cm of the soil. 展开更多
关键词 water stress NUTRIENT spatial coupling chlorophyll fluorescence column experiment
下载PDF
Approximate Solution of Oil Film Load-carrying Capacity of Turbulent Journal Bearing with Couple Stress Flow 被引量:10
19
作者 ZHANG Yongfang WU Peng +3 位作者 GUO Bo L Yanjun LIU Fuxi YU Yingtian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期106-114,共9页
The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, mo... The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational c[~brts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent .journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, whicb are suitable for high eccentricity ratios and heavy loads. 展开更多
关键词 finite length turbulent journal bearing couple stress fluid multi-parametric principle
下载PDF
Dynamic analysis of spatial parallel manipulator with rigid and flexible couplings 被引量:3
20
作者 LIU Shan-zeng DAI Jian-sheng +4 位作者 SHEN Gang LI Ai-min CAO Guo-hua FENG Shi-zhe MENG De-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期840-853,共14页
The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of be... The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism. 展开更多
关键词 RIGID and flexible couplingS parallel mechanism FINITE ELEMENT FORCE analysis dynamic stress
下载PDF
上一页 1 2 160 下一页 到第
使用帮助 返回顶部