A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simul...A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.展开更多
A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al...A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of a...Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.展开更多
As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which cove...As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which covers gas dynamics,aeroacoustics,nonlinear thermoviscous acoustics,viscous shock layer,etc.,as its special branches.The principle on which our formulation is based is the maximally natural and dynamic Helmholtz decomposition of the Navier-Stokes equation,along with the kinematic Helmholtz decomposition of the velocity field.The central results are the new dilatation equation and velocity-potential equation,which are the counterparts of vorticity transport equation and vector stream-function equation for the shearing process,respectively.Various couplings of the compressing process with shearing and thermal processes,including its physical sources,are carefully identified.While the possible applications and influences of the new formulation are yet to be explored,our preliminary discussion on the pros and cons of previous formulations pertain to acoustic analogy and that on the process splitting and coupling in highly compressible turbulence indicates that at least the formulation can serve as a new frame of reference by which one may gain some additional insight and thereby develop new approaches to the multi-process complex flow problems.展开更多
In this work, completely immiscible polyethylene/polyamidel2 (PE/PA12) blends were prepared by high shear extruder. The morphology and mechanical properties of the blends were investigated as a function of rotation ...In this work, completely immiscible polyethylene/polyamidel2 (PE/PA12) blends were prepared by high shear extruder. The morphology and mechanical properties of the blends were investigated as a function of rotation speed. It was found that the high shear processing is an effective method to improve the dispersion of the PAl2 phase in PE matrix when PA 12 contents are 5 wt% and 10 wt%, and the dispersed phase particle size is reduced with the increase of rotation speed from 100 r/min to 500 r/min. However, with further increase of PAl2 content to 20 wt%, high shear processing has no effect on the phase morphology of the blends. Accordingly, a largely increased elongation at break and impact strength are observed for PE/PAl2/95/5 and PE/PA12/90/10 blends obtained at high rotation speeds but no effect on the property of PE/PAI2/80/20. Annealing experiment demonstrated that the obtained phase morphology is not stable thus compatibilizer should be introduced in the future work. This work could provide a guideline for the application of high shear processing in the preparation of polymer blends with huge polarity difference.展开更多
基金supported by Liaoning Revitalization Talents Program, China (XLYC1807021)Joint Research Fund of Liaoning - Shenyang National Laboratory for Materials Science, China (2019JH3/30100014)+1 种基金Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang, China (RC200414)Scientific Research Fund of Liaoning Provincial Department of Education, China (LJGD2020008)
文摘A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.
基金This work was financially supported by the National Natural Science Foundation of China (No.50604007)the Natural ScienceFoundation of Liaoning Province, China (No.20062016)
文摘A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金supported by the National Basic Research Program of China(2009CB724100)
文摘Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.
基金supported by the Ministry of Science and Technology of China's Turbulence Program (Grant No.2009CB724101)the National Basic Research Program of China (Grant No.2007CB714600)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.10921202)
文摘As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which covers gas dynamics,aeroacoustics,nonlinear thermoviscous acoustics,viscous shock layer,etc.,as its special branches.The principle on which our formulation is based is the maximally natural and dynamic Helmholtz decomposition of the Navier-Stokes equation,along with the kinematic Helmholtz decomposition of the velocity field.The central results are the new dilatation equation and velocity-potential equation,which are the counterparts of vorticity transport equation and vector stream-function equation for the shearing process,respectively.Various couplings of the compressing process with shearing and thermal processes,including its physical sources,are carefully identified.While the possible applications and influences of the new formulation are yet to be explored,our preliminary discussion on the pros and cons of previous formulations pertain to acoustic analogy and that on the process splitting and coupling in highly compressible turbulence indicates that at least the formulation can serve as a new frame of reference by which one may gain some additional insight and thereby develop new approaches to the multi-process complex flow problems.
基金This work was financially supported by the National Natural Science Foundation of China(No.51421061).
文摘In this work, completely immiscible polyethylene/polyamidel2 (PE/PA12) blends were prepared by high shear extruder. The morphology and mechanical properties of the blends were investigated as a function of rotation speed. It was found that the high shear processing is an effective method to improve the dispersion of the PAl2 phase in PE matrix when PA 12 contents are 5 wt% and 10 wt%, and the dispersed phase particle size is reduced with the increase of rotation speed from 100 r/min to 500 r/min. However, with further increase of PAl2 content to 20 wt%, high shear processing has no effect on the phase morphology of the blends. Accordingly, a largely increased elongation at break and impact strength are observed for PE/PAl2/95/5 and PE/PA12/90/10 blends obtained at high rotation speeds but no effect on the property of PE/PAI2/80/20. Annealing experiment demonstrated that the obtained phase morphology is not stable thus compatibilizer should be introduced in the future work. This work could provide a guideline for the application of high shear processing in the preparation of polymer blends with huge polarity difference.