The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds o...The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds of sheathings,namely,medium⁃and low⁃density calcium⁃silicate boards and oriented strand board,were selected for double⁃shear experiments on the mechanical properties of 253 screw connections at ambient and elevated temperatures.The effects of the shear direction,screw edge distance and the number of screws on the behavior of the connections were studied.The results showed that the shear direction and the screw edge distance more significantly influenced the peak deformation,while their impacts on the peak load varied with the type of sheathings.Compared with the single⁃screw connections,the peak loads of the specimens with double⁃screw connections obviously increased but did not double.Finally,a simplified load⁃displacement curve model of stud⁃to⁃sheathing connections at elevated temperature was generated first by establishing the prediction formula for characteristic parameters,such as the peak load,the peak deformation and the elastic stiffness,and then by considering whether the curves corresponded to stiffness increase phenomena.The present investigation provides basic data for future studies on the numerical modeling of CFS structures under fire conditions.展开更多
基金the National Natural Science Foundation of China(Grant No.51978655)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201347)+1 种基金the Xuzhou Science and Technology Project(Grant No.KC20175)the China Postdoctoral Science Foundation Funded Project(Grant No.2019M652007).
文摘The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds of sheathings,namely,medium⁃and low⁃density calcium⁃silicate boards and oriented strand board,were selected for double⁃shear experiments on the mechanical properties of 253 screw connections at ambient and elevated temperatures.The effects of the shear direction,screw edge distance and the number of screws on the behavior of the connections were studied.The results showed that the shear direction and the screw edge distance more significantly influenced the peak deformation,while their impacts on the peak load varied with the type of sheathings.Compared with the single⁃screw connections,the peak loads of the specimens with double⁃screw connections obviously increased but did not double.Finally,a simplified load⁃displacement curve model of stud⁃to⁃sheathing connections at elevated temperature was generated first by establishing the prediction formula for characteristic parameters,such as the peak load,the peak deformation and the elastic stiffness,and then by considering whether the curves corresponded to stiffness increase phenomena.The present investigation provides basic data for future studies on the numerical modeling of CFS structures under fire conditions.