The resistance spot weldability of galvanized ultra-high-strength steels is not satisfed,the joints are prone to interfacial fracture and the weldable current range is narrow.To solve the problems,a novel method calle...The resistance spot weldability of galvanized ultra-high-strength steels is not satisfed,the joints are prone to interfacial fracture and the weldable current range is narrow.To solve the problems,a novel method called resistance spot welding with double-sided cover sheets was introduced to weld a galvanized Q&P980 steel with the thickness of 1.2 mm.Two thin SPCC mild steel sheets were chosen as cover sheets and were placed symmetrically at both sides between the Q&P980 steels and the electrodes,then the RSW process was carried out.Compared with the traditional RSW method,the joints obtained by using the novel method achieved larger tensile shear strength and energy absorption,which increased by 26.9%and 52.6%,respectively.With increasing the welding current,the failure mode transferred from interfacial fracture to nugget pull-out fracture or base metal tearing fracture.By contrast,the joints always showed interfacial fracture without cover sheets.The improvement of the joint performance was mainly attributed to the enlargement of the nugget.With the help of fnite element simulation,it was found that the cover sheets helped increase the contact area and reduced the current density during welding,which postponed the expulsion,and a larger area could be evenly heated.The application of the novel method can be easily extended to the resistance spot welding of other ultra-high-strength steels with various thicknesses.展开更多
In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software ...In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software PAM-CRASH is employed to conduct bird strike simulations, and a coupled Smooth Particles Hydrodynamic(SPH) and Finite Element(FE) method is used to simulate the interaction between a bird and a target structure. The SPH method is explained, and an SPH bird model is established. Constitutive models for various structural materials, such as aluminum alloys, composite materials, honeycomb, and foam materials that are used in aircraft structures,are presented, and model parameters are identified by conducting various material tests. Good agreements between simulation results and experimental data suggest that the numerical model is capable of predicting the dynamic responses of various aircraft structures under a bird strike,and numerical simulation can be used as a tool to design bird-strike-resistant aircraft structures.展开更多
基金Supported by National Key Research and Development Program of China(Grant No.2017YFB0304403)National Natural Science Foundation of China(Grant No.51871154).
文摘The resistance spot weldability of galvanized ultra-high-strength steels is not satisfed,the joints are prone to interfacial fracture and the weldable current range is narrow.To solve the problems,a novel method called resistance spot welding with double-sided cover sheets was introduced to weld a galvanized Q&P980 steel with the thickness of 1.2 mm.Two thin SPCC mild steel sheets were chosen as cover sheets and were placed symmetrically at both sides between the Q&P980 steels and the electrodes,then the RSW process was carried out.Compared with the traditional RSW method,the joints obtained by using the novel method achieved larger tensile shear strength and energy absorption,which increased by 26.9%and 52.6%,respectively.With increasing the welding current,the failure mode transferred from interfacial fracture to nugget pull-out fracture or base metal tearing fracture.By contrast,the joints always showed interfacial fracture without cover sheets.The improvement of the joint performance was mainly attributed to the enlargement of the nugget.With the help of fnite element simulation,it was found that the cover sheets helped increase the contact area and reduced the current density during welding,which postponed the expulsion,and a larger area could be evenly heated.The application of the novel method can be easily extended to the resistance spot welding of other ultra-high-strength steels with various thicknesses.
基金supported by Natural Science Foundation of China (No.11472225)
文摘In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software PAM-CRASH is employed to conduct bird strike simulations, and a coupled Smooth Particles Hydrodynamic(SPH) and Finite Element(FE) method is used to simulate the interaction between a bird and a target structure. The SPH method is explained, and an SPH bird model is established. Constitutive models for various structural materials, such as aluminum alloys, composite materials, honeycomb, and foam materials that are used in aircraft structures,are presented, and model parameters are identified by conducting various material tests. Good agreements between simulation results and experimental data suggest that the numerical model is capable of predicting the dynamic responses of various aircraft structures under a bird strike,and numerical simulation can be used as a tool to design bird-strike-resistant aircraft structures.