期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Integration of measurement and simulation of film pressure for estimating deformation of a glass sheet on a noncontact air conveyor
1
作者 Rui YANG Wei ZHONG +2 位作者 Rongyue WANG Chong LI Jiwen FANG 《Mechanical Engineering Science》 2020年第2期35-42,I0004,共9页
Recently,large and thin glass substrates are transported by air film conveyors to reduce surface damage.On the production line,the glass substrates are desired to be transported flatly on the conveyor to ensure the qu... Recently,large and thin glass substrates are transported by air film conveyors to reduce surface damage.On the production line,the glass substrates are desired to be transported flatly on the conveyor to ensure the quality inspection.A method by feedbacking film pressure to the theoretical model is proposed for estimation of the deformation of the glass sheet,and the validity of the method is theoretically and experimentally verified.First,a theoretical model including the flow behavior through a porous-walled gap is established,and the film pressure distribution can be predicted by solving the model.Then,an experimental setup that can simultaneously measure the film pressure and the flatness of the glass sheet is established,and,the validity of the model is verified experimentally.Next,with the pressure points at the grooves as the boundary and the pressure points at the flange area as the feedback,an algorithm is applied to shape the one-dimensional deformation at the centerlines in accordance with a quadratic curve.Furthermore,two-dimensional deformation of the glass sheet can then be estimated by an interpolation operation.Comparisons of the calculated results with the experimental data verify the effectiveness of the estimating method. 展开更多
关键词 deformation of glass sheet air conveyor air film pressure distribution pressure feedback
下载PDF
Improving Local Temperature Rise in Rotational Incremental Sheet Forming Process by Modifying Forming Parameters Using Response Surface Method
2
作者 李丽华 王进 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期453-458,共6页
In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,s... In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate. 展开更多
关键词 magnesium rotational heating rotating friction bringing deformed sheet positions modifying
下载PDF
Deformation behavior of laser bending of circular sheet metal 被引量:1
3
作者 Q.Nadeem S.J.Na 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第5期47-51,共5页
The application of a thermal source in non-contact forming of sheet metal has long been used. However, the replacement of this thermal source with a laser beam promises much greater controllability of the process. Thi... The application of a thermal source in non-contact forming of sheet metal has long been used. However, the replacement of this thermal source with a laser beam promises much greater controllability of the process. This yields a process with strong potential for application in aerospace, shipbuilding, automobile, and manufacturing industries, as well as the rapid manufacturing of prototypes and adjustment of misaligned components. Forming is made possible through laser-induced non-uniform thermal stresses. In this letter, we use the geometrical transition from rectangular to circle-shaped specimen and ring-shaped specimen to observe the effect of geometry on deformation in laser forming. We conduct a series of experiments on a wide range of specimen geometries. The reasons for this behavior are also analyzed. Experimental results are compared with simulated values using the software ABAQUS. The utilization of line energy is found to be higher in the case of laser forming along linear irradiation than along curved ones. We also analyze the effect of strain hindrance. The findings of the study may be useful for the inverse problem, which involves acquiring the process parameters for a known target shape of a wide range of complex shape geometries. 展开更多
关键词 deformation behavior of laser bending of circular sheet metal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部