期刊文献+
共找到3,501篇文章
< 1 2 176 >
每页显示 20 50 100
Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus
1
作者 Fawziea M.Hussien Atheer S.Hassoon Ghaidaa M.Ahmed 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期175-191,共17页
A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance ... A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger. 展开更多
关键词 NANOFLUID nusselt number exergy dimensionless exergy destruction double tube heat exchanger performance simulation aspen plus
下载PDF
Heat transfer enhancement of finned shell and tube heat exchanger using Fe_(2)O_(3)/water nanofluid 被引量:2
2
作者 AFSHARI Faraz SÖZEN Adnan +1 位作者 KHANLARI Ataollah TUNCER Azim Doğuş 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3297-3309,共13页
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra... Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%. 展开更多
关键词 heat transfer enhancement NANOFLUID shell and tube heat exchanger Fe_(2)O_(3)
下载PDF
Efficiency and Effectiveness Concepts Applied in Shell and Tube Heat Exchanger Using Ethylene Glycol-Water Based Fluid in the Shell with Nanoparticles of Copper Oxide (CuO) 被引量:2
3
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2020年第8期1-12,共12页
This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectivenes... This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectiveness (<em>ε</em>-<em>NTU</em>), and irreversibility consisted of a shell and tube heat exchanger, with cold nanofluid flowing in the shell and hot water flowing in the tube. The nanofluid consists of 50% of ethylene glycol and water as the base fluid and copper oxide (CuO) nanoparticles in suspension. The volume fractions of the nanoparticles range from 0.1 to 0.5. The flow rate in the nanofluid ranges from 0.0331 to 0.0568 Kg/s, while two mass flow rates, from 0.0568 and 0.5 Kg/s, for the hot fluid, are used as parameters for analysis. Results for the efficiency, effectiveness, irreversibility, heat transfer rate, and outlet temperatures for cold and hot fluids were obtained graphically. The flow laminarization effect was observed through the results obtained and had significant relevance in the results. 展开更多
关键词 EFFICIENCY EFFECTIVENESS shell and tube heat exchanger NANOFLUID Ethylene Glycol
下载PDF
Efficiency and Effectiveness Thermal Analysis of the Shell and Helical Coil Tube Heat Exchanger Used in an Aqueous Solution of Ammonium Nitrate Solubility (<i>ANSOL</i>) with 20% H<sub>2</sub>O and 80% <i>AN</i> 被引量:2
4
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2021年第6期24-45,共22页
The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube he... The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate. 展开更多
关键词 Thermal Efficiency Thermal Effectiveness shell and Helical Coil tube heat exchanger Ammonium Nitrate
下载PDF
Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger 被引量:1
5
作者 Mehdi Miansari Mehdi Rajabtabar Darvishi +3 位作者 Davood Toghraie Pouya Barnoon Mojtaba Shirzad As'ad Alizadeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期424-434,共11页
Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat e... Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly. 展开更多
关键词 Numerical simulation heat transfer Turbulent flow shell and coil Helically grooved shell heat exchanger
下载PDF
CFD-Based Optimization of a Shell-and-Tube Heat Exchanger
6
作者 Juanjuan Wang Jiangping Nan Yanan Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2761-2775,共15页
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then... The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number. 展开更多
关键词 heat exchanger AERODYNAMICS engineeringfluid mechanics tube heat transmission heat transfer model numerical simulation
下载PDF
The Effect of Injected Air Bubble Size on the Thermal Performance of a Vertical Shell and Helical Coiled Tube Heat Exchanger
7
作者 Saif S.Hasan Ali Sh.Baqir Hameed B.Mahood 《Energy Engineering》 EI 2021年第6期1595-1609,共15页
In the present study,the effect of injecting air bubble size on the thermal performance of a vertical counter-current shell and coiled tube heat exchanger is experimentally investigated.The experiments were accomplish... In the present study,the effect of injecting air bubble size on the thermal performance of a vertical counter-current shell and coiled tube heat exchanger is experimentally investigated.The experiments were accomplished in a cylindrical shape heat exchanger with a 50 cm height and 15 cm outer diameter.Copper coil with 3.939 m equivalent length and 0.6 cm outer diameter was used to carry the hot fluid(water).Four different cold fluid(shell side)flow rates(Q_(s)=2;4;6 and 8 LPM)Þunder laminar flow conditions(316≤Re≤1223),constant hot(coil side)flow rate fluid rates(Q_(h)=1 LPM),four different injected air flow rates(Q_(a)=0:5;1;1:5 and 2 LPM),invariant temperature difference(ΔT=20°C),and constant bubble’s number(1400)were tested.To demonstrate the effect of bubble size,a sparger with orifice diameters of 0.1,0.8,and 1.5 mm was manufactured and used in the study.The overall heat transfer coefficient(U),NTU,effectiveness,and pressure loss were invested.The experimental results clearly showed that the heat exchanger’s thermal efficiency significantly improved with increasing the shell side flow rate and the injected air flow rate.The maximum improvement in U,NTU,and effectiveness was 153%,153%,and 68%,respectively.The thermal performance of the heat exchanger was shown to be improved with increasing the bubble size.Although the latter finding agrees with recent CFD published results,more studies need to be confirmed. 展开更多
关键词 Sparger smooth helical coil vertical shell heat exchanger injection bubbles
下载PDF
Mathematical Modelling of Operating Temperature Variations of Shell-and-Tube Heat Exchanger (10-E-01)
8
作者 Romokere Isotuk Uzono Ojong Elias Ojong 《World Journal of Engineering and Technology》 2022年第2期422-433,共12页
The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. A... The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise. 展开更多
关键词 shell-and-tube heat exchanger 10-E-01 MODELING Kerosene-Crude Streams Differential Equations
下载PDF
Design of Portable Shell and Tube Heat Exchanger for a Solar Powered Water Distiller
9
作者 A. Khiabani N.M. Adam +1 位作者 T.S. Hong M. Ali 《Journal of Energy and Power Engineering》 2011年第7期612-619,共8页
This study presents theoretical considerations and results of a portable shell and tube heat exchanger in a solar water distiller system. The device is composed of a glass heat exchanger, which served as a condenser f... This study presents theoretical considerations and results of a portable shell and tube heat exchanger in a solar water distiller system. The device is composed of a glass heat exchanger, which served as a condenser for vapor condensing which were produced in black paint solar absorber. It was also composed of a tank for water source and a tank for produced distilled water. Shell and tube was designed and simulated using an implicit numerical scheme. Simulation results showed that accumulated mass water greatly depended on the inlet vapor temperature and volume, heat exchanger material, coolant water temperature and volume. Thus, changing the material from stainless steel to glass in the same condition (vapor temperature, vapor volume, coolant temperature and coolant volume). These inexpensive shell and tube heat exchangers permitted to produce 40 litre/day, distilled water from vapor with 378 K inlet temperature in atmosphere pressure. If inlet pressure increases, vapor temperature will decline and thereupon, heat exchanger's efficiency tangibility will increase. 展开更多
关键词 Portable solar powered distiller heat exchanger shell and tube.
下载PDF
3D simulation on the unit duct in the shell side of the ROD baffle heat exchanger 被引量:2
10
作者 吴金星 董其伍 +1 位作者 刘敏珊 魏新利 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期362-365,共4页
The ROD baffle heat exchanger can slightly enhance the shell side heat transfer coefficient with the significant reduction of pressure, loss due to the shell side fluid flowing longitudinally through tube bundle, whic... The ROD baffle heat exchanger can slightly enhance the shell side heat transfer coefficient with the significant reduction of pressure, loss due to the shell side fluid flowing longitudinally through tube bundle, which leads to the reduction of the manufacture and running cost and in some cases to the dimensions reduction of the heat exchangers. Because of the complexities of fluid dynamics equations and the structure of heat exchangers, few theoretical researches have been accomplished to specify the shell side characteristics of the ROD baffle heat exchanger. A unit duct model in the shell side of the longitudinal flow type heat exchanger has been developed based on suitable simplification. A numerical analysis on shell side of the ROD baffle heat exchanger has been carried out at constant wall temperature to obtain the characteristics of heat transfer and pressure drop. The numerical results show that the ROD baffles placed vertically and horizontally in the unit duct continue to shear and comminute the streamline flow when the fluid crosses over the ROD-baffles, and change the fluid flow directions, and then the continuity and stability of the fluid axe destroyed. The effect of disturbing flow can promote fluid turbulent intensity and effectively enhance heat transfer. The numerical analyses can provide the theoretical bases for optimizing the structure of ROD baffle heat exchanger and improving its performance. 展开更多
关键词 ROD baffle heat exchanger unit duct numerical simulation shell side characteristics.
下载PDF
Experimental Study on Heat Transfer and Pressure Drop of Micro-Sized Tube Heat Exchanger 被引量:2
11
作者 王秋香 戴传山 《Transactions of Tianjin University》 EI CAS 2014年第1期21-26,共6页
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t... A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional. 展开更多
关键词 micro-sized tube heat exchanger heat transfer pressure drop entrance effect
下载PDF
Review on the effect of heat exchanger tubes on flow behavior and heat/mass transfer of the bubble/slurry reactors 被引量:1
12
作者 Le Li Yansheng Zhao +3 位作者 Wenhao Lian Chun Han Qian Zhang Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期44-61,共18页
Bubble/Slurry bubble column reactors(BCR/SBCR)are intensively used as multiphase reactors for a wide range of application in the chemical,biochemical and petrochemical industries.Most of these applications involve com... Bubble/Slurry bubble column reactors(BCR/SBCR)are intensively used as multiphase reactors for a wide range of application in the chemical,biochemical and petrochemical industries.Most of these applications involve complicate gas–liquid/gas–liquid–solid flow behavior and exothermic process,thus it is necessary to equip the BCR/SBCR with heat exchanger tubes to remove the heat and govern the performance of the reactor.Amounts of experimental and numerical studies have been carried out to describe the phenomena taking place in BCR/SBCRs with heat exchanger tubes.Unfortunately,little effort has been put on reviewing the experiments and simulations for examining the effect of internals on the performance and hydrodynamics of BCR/SBCR.The objective of this work is to give a state-of-the-art review of the literature on the effects of heat exchanger tubes with different types and configurations on flow behavior and heat/mass transfer,then provide adequate information and scientific basis for the design and the development of heat exchanger tubes in BCR/SBCR,ultimately provide reasonable suggestions for better comprehend the performance of different heat exchanger tubes on hydrodynamics. 展开更多
关键词 INTERNALS HYDRODYNAMICS heat exchanger tube Bubble/slurry bubble column reactors
下载PDF
ENHANCED HEAT TRANSFER OF GLASS TUBE HEAT EXCHANGER
13
作者 高青 卓宁 马其良 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第2期44-52,共9页
The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments we... The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments were conducted,and thetlon have been obtained.Performance evaluations Nr the enhanced heattrans比r In this heatexchanger are su门niii ed up and discussed Based on the vlewp01nt Of止berinodynaffi1CS,止he avaHableenergy lossof the heat transfer swtern Inside the tube Is analwed to determine and evaluate the over-all趴ct oQthe enhanced heat transfer,The mechanism ofenhanced heat transfer]n the glass tubeand the Influence of turbutlvlty In the fough tube are also analysed and discussed. 展开更多
关键词 glass tube heat exchanger enhanced heat TRANSFER THERMODYNAMIC analysis
下载PDF
An advanced turbulator with blades and semi-conical section for heat transfer improvement in a helical double tube heat exchanger
14
作者 Seyed Hossein HASHEMI KAROUEI Seyed Soheil MOUSAVI AJAROSTAGHI +1 位作者 Saman RASHIDI Elham HOSSEINIRAD 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3491-3506,共16页
In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of t... In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of turbulator’s blades(θ) and number of turbulator’s blades(N),are considered.Results indicated that firstly,the best thermal stratification is achieved at θ=180°.Furthermore,at the lowest studied mass flow rate(m = 8 × 10^(-3) kg/s),heat transfer coefficient of turbulator with blade angle of 180° is 130.77%,25%,and 36.36% higher than cases including without turbulator,with turbulator with blade angle of θ =240°,and θ =360°,respectively.Moreover,case with N=12 showed the highest overall performance.At the highest studied mass flow rate(m = 5.842 × 10^(-2) kg/s),heat transfer coefficient for case with N=12 is up to 54.76%,27.45%,and 6.56% higher than cases including without turbulator,with turbulator with N=6,and with turbulator with N=9,respectively. 展开更多
关键词 helical double tube heat exchanger TURBULATOR BLADE thermal performance swirl flows
下载PDF
Experimental Study on Performance of Supercritical CO_2 Heat Exchanger with Four Different Inner Tubes
15
作者 吕静 曹科 +2 位作者 石冬冬 吕锋 马逸平 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期138-143,共6页
The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy produc... The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy production rate and field synergy factor.The results show that both heat transfer and entropy production unit number in four tubes decrease with water temperature increasing.Heat transfer and entropy production unit number in multiple tubes( i. e.,triple straight tube and double helix tube) is higher than their single counterparts; the non-dimensional entropy production rate increases with water temperature. Non-dimensional entropy production rate of triple straight tube and double helix tube is far below the single tube. Field synergy factor of double helix tube is much higher than that of the triple straight tube under the same condition. Further experiment was carried out in double helix tube,under various CO_2 pressure and inlet water temperature,the results are analyzed and reported in this paper. 展开更多
关键词 supercritical CO2 casing tube heat exchanger entropy production unit number non-dimensional entropy production rate field synergy factor
下载PDF
Refrigerant Distribution Characteristics in Vertical Header of Flat-Tube Heat Exchanger without Internal Protrusion
16
作者 Kazuhiro Endoh 《Journal of Energy and Power Engineering》 2017年第10期655-664,共10页
A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch... A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch, such as the ratio and distribution of vapor and liquid, due to the differences in densities and momentums of vapor and liquid in the two-phase flow make equal distribution difficult. This paper describes the distribution characteristics of a four-branch header that has a rectangular cross-section without the internal protrusion of flat tubes in the case of the inflow of the refrigerant R32 from the bottom of the header by using an equipment that can estimate the distribution ratio of the liquid and vapor phase to each branch. This paper also discusses the distribution characteristics on the basis of the flow visualization in the header. The flow visualization shows that a liquid level that contains vapor phase exists in the header and affects the distribution greatly. 展开更多
关键词 Refrigerant distribution vapor-liquid two-phase flow HEADER flat tube heat exchanger.
下载PDF
Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations 被引量:1
17
作者 Lei Huang Lin Qi +2 位作者 Hongna Wang Jinli Zhang Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1101-1108,共8页
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod... Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter. 展开更多
关键词 Supercritical water shell and tube heat exchanger Particle conveying Pneumatic transport CFD simulations CFX
下载PDF
Development and Experimental Study on Heat Exchanger with High Efficiency of Mining Machinery
18
作者 周明连 许淑惠 葛振玉 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期152-155,共4页
The flow patterns, pressure drop, and heat transfer characteristics of shell and tube heat exchangers with different shell side structure were studied systematically by experiments. Experiments show that the optimal a... The flow patterns, pressure drop, and heat transfer characteristics of shell and tube heat exchangers with different shell side structure were studied systematically by experiments. Experiments show that the optimal angle of helical baffle is 40°, and the optical porosity of porous media is 0. 985. Based on this, a new oil cooler was developed for hydraulic system of mining machinery, and its heat trausfer coefficient is higher than that of the existing oil coolers. 展开更多
关键词 shell and tube heat exchanger flow heat TRANSFER augmentation
下载PDF
Performance Assessment of Heat Exchangers for Process Heat Integration
19
作者 Fenwicks Shombe Musonye Hiram Ndiritu Robert Kinyua 《Energy Engineering》 EI 2021年第2期211-224,共14页
Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries.In this approach,maximum internally recoverable heat is determined and a heat exchange network is designed t... Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries.In this approach,maximum internally recoverable heat is determined and a heat exchange network is designed to meet the recovery targets.The thermal performance of a heat exchanger over its lifetime is however a concern to industries.Thermal performance of a heat exchanger is affected by many factors which include the physical prop-erties of the shell and tube materials,and the chemical properties of the heat transferfluid.In this study,thermal performance of shell and tube heat exchangers designed to meet heat recovery targets in a Pinch Analysis study is simulated.The aim of this paper is to present predictions of thermal performances of shell and tube heat exchan-gers with different heat transferfluids and geometries as they undergo fouling degradation.Engineering approaches based on thermodynamic analysis,heat balance and Kern Design equations,as well as what-if simu-lation modeling are used in this work.Shell and tube heat exchangers were designed to meet internal heat recov-ery targets for three process plants,A,B and C.These targets were published in a separate paper.The effects of degradation of the tubes-due to incremental growth of fouling resistance-on thermal performance of the exchan-ger were simulated using Visual Basic Analysis(VBA).Overall,it was found that growth in fouling reduces ther-mal efficiency of shell and tube heat exchangers with an exponential relationship.An increase of 100%of fouling resistance leads to an average reduction of 0.37%heat transfer.Higher values of logarithmic mean temperature difference(LMTD)and higher ratios of external diameter to internal diameter of the exchanger tubes amplify the effect of fouling growth on thermal performance of the exchangers.The results of this work can be applied in pinch analysis,during design of heat exchangers to meet the internal heat recovery targets,especially in predicting how fouling growth can affect these targets.This can also be useful in helping operators of shell and tube heat exchangers to determine cleaning intervals of the exchangers to avoid heat transfer loss. 展开更多
关键词 Pinch analysis internal heat recovery thermal performance fouling resistance fouling growth what if simulation shell and tube heat exchangers
下载PDF
A Comprehensive Review of the Influence of Heat Exchange Tubes on Hydrodynamic,Heat,and Mass Transfer in Bubble and Slurry Bubble
20
作者 Dalia S.Makki Hasan Sh.Majdi +5 位作者 Amer A.Abdulrahman Abbas J.Sultan Zahraa W.Hasan Laith S.Sabri Bashar J.Kadhim Muthanna HAl-Dahhan 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2613-2637,共25页
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ... Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified. 展开更多
关键词 Fischer-tropsch synthesis bubble/slurry bubble column reactors heat exchanging tubes HYDRODYNAMIC heat transfer mass transfer
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部