In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, ...In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, which is used to solve the bending problems of nonhomogeneous cylindrical shells under arbitrary axial symmetric loads, is derived. Its uniform convergence is proved. Finally, it is only necessary to solve one set of binary linear algebraic equations. A numerical example is given at the end of the paper which indicates satisfactory results of displacement and stress resultants can be obtained and converge to the exact solution.展开更多
In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, t...In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
With the considerations of the behaviors of shell deformation, mold flux film and air gap dynamic distribution in shell/mold gap, a two dimensional slice-travel transient thermo-mechanical coupled model of simulation ...With the considerations of the behaviors of shell deformation, mold flux film and air gap dynamic distribution in shell/mold gap, a two dimensional slice-travel transient thermo-mechanical coupled model of simulation shell solidification in wide and thick slab continuous casting mold was developed by using the commercial program ANSYS. The evolutions of strand-mold system thermal behaviors, including the air gap formation and the mold flux film dynamical distribution in shell/mold gap and shell temperature field, and the evolutions of shell deformation and stress distribution of peritectic steel solidified in a 2120 mm wide and 266 mm thick slab continuous casting mold were analyzed. The results show that the air gap formation and the thick mold flux film distribution mainly concentrate in the regions 0–21 mm and 0–7 mm, 0–120 mm and 0–100 mm off the shell wide and narrow faces corners, and thus the hot spots are given rise to form in the regions 15–55 mm and 15–50 mm off the shell wide and narrow face corners. The shell server deformation occurs in the off-corners in the middle and lower parts of the mold. The stress evolution in shell surface is tensile stress, while that in shell solidification front is compressive stress.展开更多
A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation...A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.展开更多
文摘In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, which is used to solve the bending problems of nonhomogeneous cylindrical shells under arbitrary axial symmetric loads, is derived. Its uniform convergence is proved. Finally, it is only necessary to solve one set of binary linear algebraic equations. A numerical example is given at the end of the paper which indicates satisfactory results of displacement and stress resultants can be obtained and converge to the exact solution.
文摘In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
基金Item Sponsored by National Outstanding Young Scientist Foundation of China(50925415)Fundamental Research Funds for the Central Universities of China(N100102001)Postdoctoral Science Foundation of China(2012M510822)
文摘With the considerations of the behaviors of shell deformation, mold flux film and air gap dynamic distribution in shell/mold gap, a two dimensional slice-travel transient thermo-mechanical coupled model of simulation shell solidification in wide and thick slab continuous casting mold was developed by using the commercial program ANSYS. The evolutions of strand-mold system thermal behaviors, including the air gap formation and the mold flux film dynamical distribution in shell/mold gap and shell temperature field, and the evolutions of shell deformation and stress distribution of peritectic steel solidified in a 2120 mm wide and 266 mm thick slab continuous casting mold were analyzed. The results show that the air gap formation and the thick mold flux film distribution mainly concentrate in the regions 0–21 mm and 0–7 mm, 0–120 mm and 0–100 mm off the shell wide and narrow faces corners, and thus the hot spots are given rise to form in the regions 15–55 mm and 15–50 mm off the shell wide and narrow face corners. The shell server deformation occurs in the off-corners in the middle and lower parts of the mold. The stress evolution in shell surface is tensile stress, while that in shell solidification front is compressive stress.
文摘A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.