In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the materi...Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the transformation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rectangular openings are considered.展开更多
In this paper,a boundary element scheme for arbitrary elastic thin shells is elaborated,Based on BEM of 3D linear elasticity and Kirchhoff's hypothesis,boundary integral equations for shells are deduced. As a resu...In this paper,a boundary element scheme for arbitrary elastic thin shells is elaborated,Based on BEM of 3D linear elasticity and Kirchhoff's hypothesis,boundary integral equations for shells are deduced. As a result,only Kelvin's solution is used,the difficulty,in finding a fundamental solution of arbitrary shells is successfully avoided.展开更多
Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I...Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.展开更多
The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simpl...The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).展开更多
The purpose of the present study is to develop a new finite element method far analyzing buckling of delaminated composite plates and shells. This is achieved by establishing a new finite element called the reference-...The purpose of the present study is to develop a new finite element method far analyzing buckling of delaminated composite plates and shells. This is achieved by establishing a new finite element called the reference-surface element. By use of the compatibility condition under Mindlin assumptions, the formulation of the reference-surface element was derived from whichever plate-element or shell-element being capable of analyzing composite plates and shells. This method assures a reasonable description of displacement field and the satisfaction of compatibility conditions for delamination problem. Numerical results for linear delamination buckling of axially compressed shells are presented to validate the method.展开更多
The variational functional of the Hellinger-Reissner variational principle for the large displacement problem of a thin shallow shell with an arbitrary shape is first established. Then the functional of the modified p...The variational functional of the Hellinger-Reissner variational principle for the large displacement problem of a thin shallow shell with an arbitrary shape is first established. Then the functional of the modified principle suitable for the finite element method is derived. In the functional only two independent variables, the deflection w and the stress function F are included. The displacement expressions in the middle surface on the boundary of the shell is also derived by means of the previous two variables.展开更多
采煤机摇臂壳体是采煤机的重要部件及薄弱环节,其寿命直接影响采煤机的工作性能。为研究采煤机截割复杂煤层时滚筒所受载荷对其摇臂壳体寿命的影响,以MG325型采煤机截割兖州矿区杨村煤矿17层含夹矸煤壁为工程背景,通过虚拟样机技术和离...采煤机摇臂壳体是采煤机的重要部件及薄弱环节,其寿命直接影响采煤机的工作性能。为研究采煤机截割复杂煤层时滚筒所受载荷对其摇臂壳体寿命的影响,以MG325型采煤机截割兖州矿区杨村煤矿17层含夹矸煤壁为工程背景,通过虚拟样机技术和离散单元法-多柔体动力学(Discrete Element Method-Multi Flexible Body Dynamics,DEM-MFBD)双向耦合技术,利用离散元仿真软件EDEM和多体系统动力学仿真软件RecurDyn,基于实际工况获得采煤机螺旋滚筒的外负载。在RecurDyn仿真平台中,建立采煤机摇臂三维实体模型并进行边界条件的设置及摇臂壳体的柔性化,通过软件本身的Durability疲劳耐久分析模块,计算摇臂壳体的疲劳寿命。利用专业绘图软件Origin绘制2个软件后处理的载荷曲线图,发现其走势较为一致,其后处理数据均值,标准差等相接近,证明两者耦合效果较好。结果表明:MG325型采煤机以滚筒转速83.5 r/min,截深600 mm,牵引速度5 m/min截割复杂煤层时,滚筒所受载荷具有较为强烈的载荷波动现象,由等效应力云图可得摇臂壳体的最大等效应力为230.51 MPa,且应力较大处集中位于壳体的各个齿轮轴孔处、凹槽处以及上下耳过渡处,经应力疲劳分析后得其最小寿命位于壳体的齿轮轴孔处,循环次数为8.3215×10~6次。本研究方法可为复杂条件下工矿装备大型结构件的优化设计提供参考。展开更多
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the transformation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rectangular openings are considered.
基金The project supported by National Natural Science Foundation of China
文摘In this paper,a boundary element scheme for arbitrary elastic thin shells is elaborated,Based on BEM of 3D linear elasticity and Kirchhoff's hypothesis,boundary integral equations for shells are deduced. As a result,only Kelvin's solution is used,the difficulty,in finding a fundamental solution of arbitrary shells is successfully avoided.
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
基金supported by he National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No.111005)
文摘Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .5 96 780 39) .
文摘The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).
文摘The purpose of the present study is to develop a new finite element method far analyzing buckling of delaminated composite plates and shells. This is achieved by establishing a new finite element called the reference-surface element. By use of the compatibility condition under Mindlin assumptions, the formulation of the reference-surface element was derived from whichever plate-element or shell-element being capable of analyzing composite plates and shells. This method assures a reasonable description of displacement field and the satisfaction of compatibility conditions for delamination problem. Numerical results for linear delamination buckling of axially compressed shells are presented to validate the method.
文摘The variational functional of the Hellinger-Reissner variational principle for the large displacement problem of a thin shallow shell with an arbitrary shape is first established. Then the functional of the modified principle suitable for the finite element method is derived. In the functional only two independent variables, the deflection w and the stress function F are included. The displacement expressions in the middle surface on the boundary of the shell is also derived by means of the previous two variables.
文摘采煤机摇臂壳体是采煤机的重要部件及薄弱环节,其寿命直接影响采煤机的工作性能。为研究采煤机截割复杂煤层时滚筒所受载荷对其摇臂壳体寿命的影响,以MG325型采煤机截割兖州矿区杨村煤矿17层含夹矸煤壁为工程背景,通过虚拟样机技术和离散单元法-多柔体动力学(Discrete Element Method-Multi Flexible Body Dynamics,DEM-MFBD)双向耦合技术,利用离散元仿真软件EDEM和多体系统动力学仿真软件RecurDyn,基于实际工况获得采煤机螺旋滚筒的外负载。在RecurDyn仿真平台中,建立采煤机摇臂三维实体模型并进行边界条件的设置及摇臂壳体的柔性化,通过软件本身的Durability疲劳耐久分析模块,计算摇臂壳体的疲劳寿命。利用专业绘图软件Origin绘制2个软件后处理的载荷曲线图,发现其走势较为一致,其后处理数据均值,标准差等相接近,证明两者耦合效果较好。结果表明:MG325型采煤机以滚筒转速83.5 r/min,截深600 mm,牵引速度5 m/min截割复杂煤层时,滚筒所受载荷具有较为强烈的载荷波动现象,由等效应力云图可得摇臂壳体的最大等效应力为230.51 MPa,且应力较大处集中位于壳体的各个齿轮轴孔处、凹槽处以及上下耳过渡处,经应力疲劳分析后得其最小寿命位于壳体的齿轮轴孔处,循环次数为8.3215×10~6次。本研究方法可为复杂条件下工矿装备大型结构件的优化设计提供参考。