A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of f...A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard spherical shell with simply supported edges. The results of the analysis showed that reasonably accurate results were obtained even when modeling the shells using fewer elements compared to other shell element types. The element is then used in a finite element model to analyze polygon shaped spherical roof structures. The distribution of the various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched beams as stiffeners spanning the two diagonally opposite end comers is investigated. It is found that the stiffeners reduced the deflections and the stresses in the roof structure by considerable value.展开更多
This paper studies and analyzes tall buildings with shell and flat roof responses designed for gravity and earthquake loads in different zones having different soil profiles. These tall buildings having two different ...This paper studies and analyzes tall buildings with shell and flat roof responses designed for gravity and earthquake loads in different zones having different soil profiles. These tall buildings having two different heights and different configurations are simulated with different load combinations. The responses of the simulated structural models with flat and shell roofs are studied and analyzed. These responses draw recommendations and guidelines for preliminary design of structurally efficient and reliable tall buildings with shell roof in earthquake zones. Five different earthquake zone factors (Z1 - Z5) along with the five different soil profiles (S1 - S5) are selected in this study. The non-linear dynamic response of buildings was obtained using three simulated models of buildings;square/rectangular, circular, and tube-shaped building. Total of 12 building models, four under each category, are analyzed using the finite element software (STAAD pro) subjected to the gravity as well as earthquake loading defined by UBC and IBC codes. Each building model is analyzed with two different story heights;which are 120 meters for 30 stories and 72 meters for 18 stories respectively. Horizontal and vertical displacement comparison is made among the flat roof and shell roof building for 32 and 18 stories building satisfying the ACI code of design requirement and drift index of 1/500 (0.002). The results showed that the drift index value for all the studied buildings is close to 0.002. All the maximum horizontal and vertical deflections occur under the earthquake zone-5 (0.40 gravitational acceleration) with soil profile-5 (Soft soil). The shell roof slab with less thickness than the flat roof slab did satisfy the horizontal and vertical deflection limits, therefore, it is more economical than the flat roof slab.展开更多
文摘A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard spherical shell with simply supported edges. The results of the analysis showed that reasonably accurate results were obtained even when modeling the shells using fewer elements compared to other shell element types. The element is then used in a finite element model to analyze polygon shaped spherical roof structures. The distribution of the various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched beams as stiffeners spanning the two diagonally opposite end comers is investigated. It is found that the stiffeners reduced the deflections and the stresses in the roof structure by considerable value.
文摘This paper studies and analyzes tall buildings with shell and flat roof responses designed for gravity and earthquake loads in different zones having different soil profiles. These tall buildings having two different heights and different configurations are simulated with different load combinations. The responses of the simulated structural models with flat and shell roofs are studied and analyzed. These responses draw recommendations and guidelines for preliminary design of structurally efficient and reliable tall buildings with shell roof in earthquake zones. Five different earthquake zone factors (Z1 - Z5) along with the five different soil profiles (S1 - S5) are selected in this study. The non-linear dynamic response of buildings was obtained using three simulated models of buildings;square/rectangular, circular, and tube-shaped building. Total of 12 building models, four under each category, are analyzed using the finite element software (STAAD pro) subjected to the gravity as well as earthquake loading defined by UBC and IBC codes. Each building model is analyzed with two different story heights;which are 120 meters for 30 stories and 72 meters for 18 stories respectively. Horizontal and vertical displacement comparison is made among the flat roof and shell roof building for 32 and 18 stories building satisfying the ACI code of design requirement and drift index of 1/500 (0.002). The results showed that the drift index value for all the studied buildings is close to 0.002. All the maximum horizontal and vertical deflections occur under the earthquake zone-5 (0.40 gravitational acceleration) with soil profile-5 (Soft soil). The shell roof slab with less thickness than the flat roof slab did satisfy the horizontal and vertical deflection limits, therefore, it is more economical than the flat roof slab.