To enhance the nucleation and crystallization properties of polyester (e.g., polyethylene terephthalate, PET), core-shell structured particles are used to improve these properties by controlling the inorganic di...To enhance the nucleation and crystallization properties of polyester (e.g., polyethylene terephthalate, PET), core-shell structured particles are used to improve these properties by controlling the inorganic dispersion properties in the polymers. In the paper, monodisperse particles of silica/polystyrene (PS) are prepared with both dispersion and emulsion polymerization techniques. The monodisperse silicon dioxide particles are first prepared with the seed growth method and modified by the coupling agents. Silica is properly modified with KH-570, and its size deviation is 3.0% or so. The modified silica then reacts with the mixture of ethanol, water medium, and monomer of styrene under dispersion polymerization. Results show that the dispersion polymerization technique is more suitable for monodisperse core-shell SiO2/PS particles than that of the emulsion. The morphology and molecular structure of the core-shell particles are investigated with the transmission electron microscope (TEM), and fourier transform infra-red spectroscopy (FTIR). The results show that the modified silica particles are successfully encapsulated with polystyrene. The average number of silica particles encapsulated into each polystyrene sphere decreases when the size of silica particles increases from 50 nm to 600 nm, and will approach one when the silica is greater than 380nm in size. The mass ratio for silica/PS particles in emulsion polymerization is 4.7/1, lower than that of 6.8/1 for dispersion polymerization, which is the first reported optimized data for preparing the similar monodisperse composite particles. Thus, the PS shell in the former is thinner than that in the latter.展开更多
Different fused-core stationary phase chemistries(C18,Amide,Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides.In addition,the effects of the mobile phase co...Different fused-core stationary phase chemistries(C18,Amide,Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides.In addition,the effects of the mobile phase composition(ACN or MeOH as organic modifier;formic acid or acetic acid,as acidifying component) on the column selectivity,peak shape and overall chromatographic performance were evaluated.The RP-amide column,combined with a formic acid-acetonitrile based gradient system,performed as best.A peptide reversed-phase retention model is proposed,consisting of 5 variables:log SumAA,log Sv,clog P,log nHDon and log nHAcc.Quantitative structure-retention relationship(QSRR) models were constructed for 16 different chromatographic systems.The accuracy of this peptide retention model was demonstrated by the comparison between predicted and experimentally obtained retention times,explaining on average 86% of the variability.Moreover,using an external set of 5 validation peptides,the predictive power of the model was also demonstrated.This peptide retention model includes the novel in-silico calculated amino acid descriptor,AA,which was calculated from log P,3D-MoRSE,RDF and WHIM descriptors.展开更多
Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have...Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have been developed,with multicellular tumor spheroids being the most popular and effective model. In this work, we present a microfluidic device used as a robust platform for generating core–shell hydrogel microspheres with precisely controlled sizes and varied components of hydrogel matrix. To gain a better understanding of the governing mechanism of microsphere formation,computational models based on multiphase flow were developed to numerically model the droplet generation and velocity field evolution process with COMSOL Multiphysics software. Our modeling results show good agreement with experiments in size dependence on flow rate as well as effect of vortex flow on microsphere formation. With real-time tuning of the flow rates of aqueous phase and oil phase, tumor cells were encapsulated into the microspheres with controllable core–shell structure and different volume ratios of core(comprised of alginate, Matrigel, and/or Collagen) and shell(comprised of alginate). Viability of cells in four different hydrogel matrices were evaluated by standard acridine orange(AO) and propidium iodide(PI) staining. The proposed microfluidic system can play an important role in engineering the in vitro micro-environment of tumor spheroids to better mimic the actual in vivo 3D spatial structure of a tumor and perfect the 3D tumor models for more effective clinical therapies.展开更多
The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of...The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of water-bathing and the initial CdSe:ZnS molar ratio were discussed. In comparison to the CdSe plain core nanocrystals, the CdSe/ZnS core/shell nanocrystals show much brighter photoluminescence demonstrated by the photoluminescence spectra. The epitaxial growth of the core/shell structures was verified by TEM and XRD.展开更多
We reported an approach to reconstruct the complex phase morphology of impact polypropylene copolymer (IPC) with core-shell dispersed particles and to optimize its toughness in approximate shear condition. The molte...We reported an approach to reconstruct the complex phase morphology of impact polypropylene copolymer (IPC) with core-shell dispersed particles and to optimize its toughness in approximate shear condition. The molten-state annealing results indicate that the phase structure with core-shell dispersed particles is unstable and could be completely destroyed by static annealing, resulting in the degradation of impact strength. By using a co-rotating twin screw extruder, we found that the dispersed particle with core-shell structure could be rebuilt in appropriate condition with the recovery of excellent impact strength due to both the huge interfacial tension during solidification and the great difference in viscosity of components. Results reveal that almost all the extruded IPCs show the impact strength 60%-90% higher than that of annealed IPCs at room temperature. And the twice-extruded IPC shows the highest impact strength, 446% higher than that of IPC annealed for 30 min. As for low temperature tests, the impact strength of extruded IPCs also increases by 33%-58%. According to adjusting the processing conditions including extrusion speed, extrusion frequency and temperature, an optimization of toughness was well established.展开更多
Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were f...Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.展开更多
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC...A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content(about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of Eb P, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.展开更多
Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples posses...Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples possessed one glass transition temperature (Tg) and two exothermal processes during DSC heating scannings. After being thermally treated above the exothermal peak temperature, they possessed two glass transition temperatures with the disappearance of exothermal peaks, whilst a core/shell structure was formed. This was likely related with the outward diffusion of reactive oligomers to the outer layer of particles.展开更多
Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall prope...Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.展开更多
文摘To enhance the nucleation and crystallization properties of polyester (e.g., polyethylene terephthalate, PET), core-shell structured particles are used to improve these properties by controlling the inorganic dispersion properties in the polymers. In the paper, monodisperse particles of silica/polystyrene (PS) are prepared with both dispersion and emulsion polymerization techniques. The monodisperse silicon dioxide particles are first prepared with the seed growth method and modified by the coupling agents. Silica is properly modified with KH-570, and its size deviation is 3.0% or so. The modified silica then reacts with the mixture of ethanol, water medium, and monomer of styrene under dispersion polymerization. Results show that the dispersion polymerization technique is more suitable for monodisperse core-shell SiO2/PS particles than that of the emulsion. The morphology and molecular structure of the core-shell particles are investigated with the transmission electron microscope (TEM), and fourier transform infra-red spectroscopy (FTIR). The results show that the modified silica particles are successfully encapsulated with polystyrene. The average number of silica particles encapsulated into each polystyrene sphere decreases when the size of silica particles increases from 50 nm to 600 nm, and will approach one when the silica is greater than 380nm in size. The mass ratio for silica/PS particles in emulsion polymerization is 4.7/1, lower than that of 6.8/1 for dispersion polymerization, which is the first reported optimized data for preparing the similar monodisperse composite particles. Thus, the PS shell in the former is thinner than that in the latter.
基金funded by a Ph.D.grant of "Institute for the Promotion of Innovation through Science and Technology in Flanders(IWT-Vlaanderen)"(No.091241 for MD and 073402 for SVD)the Special Research Fund of the Ghent University (Grant no.BOF 01J22510 for EW and BOF 01D38811 for SS)
文摘Different fused-core stationary phase chemistries(C18,Amide,Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides.In addition,the effects of the mobile phase composition(ACN or MeOH as organic modifier;formic acid or acetic acid,as acidifying component) on the column selectivity,peak shape and overall chromatographic performance were evaluated.The RP-amide column,combined with a formic acid-acetonitrile based gradient system,performed as best.A peptide reversed-phase retention model is proposed,consisting of 5 variables:log SumAA,log Sv,clog P,log nHDon and log nHAcc.Quantitative structure-retention relationship(QSRR) models were constructed for 16 different chromatographic systems.The accuracy of this peptide retention model was demonstrated by the comparison between predicted and experimentally obtained retention times,explaining on average 86% of the variability.Moreover,using an external set of 5 validation peptides,the predictive power of the model was also demonstrated.This peptide retention model includes the novel in-silico calculated amino acid descriptor,AA,which was calculated from log P,3D-MoRSE,RDF and WHIM descriptors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474345,11674043,and 11604030)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2018jcyjAX0338)
文摘Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have been developed,with multicellular tumor spheroids being the most popular and effective model. In this work, we present a microfluidic device used as a robust platform for generating core–shell hydrogel microspheres with precisely controlled sizes and varied components of hydrogel matrix. To gain a better understanding of the governing mechanism of microsphere formation,computational models based on multiphase flow were developed to numerically model the droplet generation and velocity field evolution process with COMSOL Multiphysics software. Our modeling results show good agreement with experiments in size dependence on flow rate as well as effect of vortex flow on microsphere formation. With real-time tuning of the flow rates of aqueous phase and oil phase, tumor cells were encapsulated into the microspheres with controllable core–shell structure and different volume ratios of core(comprised of alginate, Matrigel, and/or Collagen) and shell(comprised of alginate). Viability of cells in four different hydrogel matrices were evaluated by standard acridine orange(AO) and propidium iodide(PI) staining. The proposed microfluidic system can play an important role in engineering the in vitro micro-environment of tumor spheroids to better mimic the actual in vivo 3D spatial structure of a tumor and perfect the 3D tumor models for more effective clinical therapies.
基金the National Natural Science Foundation of China (No. 50572072)Nano Special Fouds from Science and Technology Commission of Shanghai Municipality (No. 0852nm05200)
文摘The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of water-bathing and the initial CdSe:ZnS molar ratio were discussed. In comparison to the CdSe plain core nanocrystals, the CdSe/ZnS core/shell nanocrystals show much brighter photoluminescence demonstrated by the photoluminescence spectra. The epitaxial growth of the core/shell structures was verified by TEM and XRD.
基金financially supported by the National Natural Science Foundation of China(Nos.51173157 and 51173165)the Fundamental Research Funds for the Central Universities(No.2013QNA4048)
文摘We reported an approach to reconstruct the complex phase morphology of impact polypropylene copolymer (IPC) with core-shell dispersed particles and to optimize its toughness in approximate shear condition. The molten-state annealing results indicate that the phase structure with core-shell dispersed particles is unstable and could be completely destroyed by static annealing, resulting in the degradation of impact strength. By using a co-rotating twin screw extruder, we found that the dispersed particle with core-shell structure could be rebuilt in appropriate condition with the recovery of excellent impact strength due to both the huge interfacial tension during solidification and the great difference in viscosity of components. Results reveal that almost all the extruded IPCs show the impact strength 60%-90% higher than that of annealed IPCs at room temperature. And the twice-extruded IPC shows the highest impact strength, 446% higher than that of IPC annealed for 30 min. As for low temperature tests, the impact strength of extruded IPCs also increases by 33%-58%. According to adjusting the processing conditions including extrusion speed, extrusion frequency and temperature, an optimization of toughness was well established.
文摘Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.
基金financially supported by the National Natural Science Foundation of China(Nos.51173157 and 51173165)the Fundamental Research Funds for the Central Universities(No.2013QNA4048)Nature Science Foundation of Zhejiang Province(No.Y4100314)
文摘A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content(about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of Eb P, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.
基金This work was financially supported by the National Natural Science Foundation of China(No.20104008).
文摘Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples possessed one glass transition temperature (Tg) and two exothermal processes during DSC heating scannings. After being thermally treated above the exothermal peak temperature, they possessed two glass transition temperatures with the disappearance of exothermal peaks, whilst a core/shell structure was formed. This was likely related with the outward diffusion of reactive oligomers to the outer layer of particles.
文摘Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.