Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense→Artemia Artemia salina→Mysid shrimp Neomysis awatschensis; A. tama...Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense→Artemia Artemia salina→Mysid shrimp Neomysis awatschensis; A. tamarense→N. awatschensis; A. tamarense→A, salina→Perch Lateolabrax japonicus; and A. tamarense→L, japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels in the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly through the vector of A. salina was then studied, The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells·mL^-1) for 70 minutes, the content of Chl.a in A. salina and N. awatschensis reached 0.87 and 0.024 μg.mg^-1, respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU.g^-1, respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in anemia sample collected on the 1st day was estimated to be 1.65×10 ^5 μg STX equal/individual. Toxin accumulation in L japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly from the vector ofA. salina was also studied. The mice injected with extracts from L japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. tamarense directly or indirectly via the food chains.展开更多
Objective Shellfish are recognized as important vehicles of norovirus-associated gastroenteritis. The present study aimed to monitor norovirus contamination in oysters along the farm-to-fork continuum in Guangxi, a ma...Objective Shellfish are recognized as important vehicles of norovirus-associated gastroenteritis. The present study aimed to monitor norovirus contamination in oysters along the farm-to-fork continuum in Guangxi, a major oyster production area in Southwestern China. Methods Oyster samples were collected monthly from farms, markets, and restaurants, from January to December 2016. Norovirus was detected and quantified by one-step reverse transcription-droplet digital polymerase chain reaction(RT-ddPCR). Results A total of 480 oyster samples were collected and tested for norovirus genogroups I and II. Norovirus was detected in 20.7% of samples, with genogroup II predominating. No significant difference was observed in norovirus prevalence among different sampling sites. The norovirus levels varied widely, with a geometric mean of 19,300 copies/g in digestive glands. Both norovirus prevalence and viral loads showed obvious seasonality, with a strong winter bias. Conclusion This study provides a systematic analysis of norovirus contamination ‘from the farm to the fork' in Guangxi. RT-ddPCR can be a useful tool for detection and quantification of low amounts of norovirus in the presence of inhibitors found particularly in foodstuffs. This approach will contribute to the development of strategies for controlling and reducing the risk of human illness resulting from shellfish consumption.展开更多
AIM: To assess current practice of United Kingdom cardiologists with respect to patients with reported shellfish/iodine allergy, and in particular the use of iodinated contrast for elective coronary angiography.Moreov...AIM: To assess current practice of United Kingdom cardiologists with respect to patients with reported shellfish/iodine allergy, and in particular the use of iodinated contrast for elective coronary angiography.Moreover we have reviewed the current evidence-base and guidelines available in this area.METHODS: A questionnaire survey was send to 500senior United Kingdom cardiologists(almost 50% cardiologists registered with British Cardiovascular Society)using email and first 100 responses used to analyze practise. We involved cardiologists performing coronary angiograms routinely both at secondary and tertiary centres. Three specific questions relating to allergy were asked:(1) History of shellfish/iodine allergy in pre-angiography assessment;(2) Treatments offeredfor shellfish/iodine allergy individuals; and(3) Any specific treatment protocol for shellfish/iodine allergy cases. We aimed to establish routine practice in United Kingdom for patients undergoing elective coronary angiography. We also performed comprehensive PubMed search for the available evidence of relationship between shellfish/iodine allergy and contrast media.RESULTS: A total of 100 responses were received, representing 20% of all United Kingdom cardiologists. Ninety-three replies were received from consultant cardiologists, 4 from non-consultant grades and 3 from cardiology specialist nurses. Amongst the respondents, 66% routinely asked about a previous history of shellfish/iodine allergy. Fifty-six percent would pre-treat these patients with steroids and anti-histamines. The other 44% do nothing, or do nonspecific testing based on their personal experience as following:(1) Skin test with 1 mL of subcutaneous contrast before intravenous contrast;(2) Test dose 2 mL contrast before coronary injection;(3) Close observation for shellfish allergy patients; and(4) Minimal evidence that the steroid and anti-histamine regime is effective but it makes us feel better.CONCLUSION: There is no evidence that allergy to shellfish alters the risk of reaction to intravenous contrast more than any other allergy and asking about such allergies in pre-angiogram assessment will not provide any additional information except propagating the myth.展开更多
To analyze and evaluate the status of organochlorine pollutants in the Changjiang (Yangtze River) estuary and adjacent waters, the concentrations of hexachlorocyclohexane (HCHs) and dichlorodiphenyltrichloroethane...To analyze and evaluate the status of organochlorine pollutants in the Changjiang (Yangtze River) estuary and adjacent waters, the concentrations of hexachlorocyclohexane (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in shellfish collected in study area from 2006 to 2007 were determined with gas chromatography (GC). The concentration range of HCHs was (ND-12.13)×10^-3 mg/kg wet weight and averaged at 0.54×10^-3 mg/kg while the concentration of DDTs was in the range of (4.06-281.73) ×10^-3 mg/kg with a mean of 57.52×10^-3 mg/kg in the survey areas. The concentrations of DDTs in the shellfish were higher than HCHs', so that DDTs could be considered as typical organochlorine pollutants in the areas. The concentrations of DDTs in the shellfish were higher than HCHs', so that DDTs could be considered as typical organochlorines pollutants. The HCHs in all the shellfish conformed to the first level of criterion (0.02 mg/kg) of the Marion Biology Quality (GB 18421-2001), and that of DDTs in most samples were beyond the first level (0.01 mg/kg) but conformed to the second level (0.10 mg/kg). On average, α-HCH and δ-HCH occupied the most part of HCHs, while O,P'-DDT and P,P'-DDT occupied the most part of DDTs. The concentrations of organocholorine pesticides in shellfish samples varied in site and in species. The highest level occurred at the Shengsi (SS), followed by Yangkougang (YKG), Lvsi (LS), Dongyuan (DY) and Beibayao (BBY), low concentrations were observed at Changsha (CS), Beidaodi (BDD), and Gouqi (GQ). The concentration of HCHs and DDTs in most sites decreased clearly from 2006 to 2007 except for YKG, DY, BDD, LYS, and SS. All of above results suggested that the study area was slightly affected by organochlorine pesticide, special by DDTs.展开更多
Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to...Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to decrease poisoning events in bivalve consuming.PSTs are traditionally examined using the whole soft-tissues.However,PSTs accumulation varies dramatically in different tissues of bivalves.Some tough tissues/organs(such as mantle),which account for a large proportion of the total soft body,exhibit a lower accumulation of PSTs and make the toxin extraction time-and reagent-consuming,potentially decreasing the accuracy and sensitivity of PSTs monitoring in bivalves.To develop a sensitive and cost-effective approach for PSTs examination in massively farmed bivalves,we fed three commercially important bivalves,Yesso scallop Patinopecten yessoensis,Pacific oyster Crassostrea gigas,and blue mussel Mytilus edulis with PSTs-producing dinoflagellate Alexandrium catenella,and detected PSTs concentration in different tissues.For all three bivalve species,the digestive gland accumulated much more PSTs than other tissues,and the digestive gland’s toxicity was significantly correlated with the PSTs toxicity of the whole soft-tissues,with r^(2)=0.94,0.92,and 0.94 for Yesso scallop,Pacific oyster,and blue mussel,respectively.When the toxicity of the whole soft-tissues reached 80μgSTXeq(100g)^(−1),the regulatory limit for commercial shellfish,the digestive gland’s toxicity reached 571.48,498.90,and 859.20μgSTXeq(100g)^(−1) in Yesso scallop,Pacific oyster,and blue mussel,respectively.Our results indicate that digestive gland can be used for the sensitive and cost-effective monitoring of PSTs in bivalves.展开更多
The current testing for paralytic shellfish poisoning(PSP) in shellfish is based on the mouse bioassay(MBA).To alleviate animal welfare concerns,we evaluated the utility of using sublethal indicators of toxicity as an...The current testing for paralytic shellfish poisoning(PSP) in shellfish is based on the mouse bioassay(MBA).To alleviate animal welfare concerns,we evaluated the utility of using sublethal indicators of toxicity as an alternative to measuring time to death.Live mice were injected with a PSP congener and the changes in neurotransmitter levels were measured 60,90,and 120 min after injection.Acetylcholine(ACh) was the most sensitive marker for PSP toxicity.The changes in neurotransmitter levels were most pronounced in the blood.Thus,measurement of Ach levels in the blood may serve as a sensitive predictor for PSP that would not require sacrifice of the mice.This method was relatively simple,sensitive(less than 1 μg/kg weight,equivalent to 20 ng/mL),low maintenance,and rapid(less than 60 min).展开更多
Paralytic shellfish toxins(PSTs) are notorious neurotoxins that threaten public health and food safety worldwide.Although PST monitoring programs have recently been established throughout China, the profiles and varia...Paralytic shellfish toxins(PSTs) are notorious neurotoxins that threaten public health and food safety worldwide.Although PST monitoring programs have recently been established throughout China, the profiles and variation of PSTs in important commercial clams(e.g., Mactra veneriformis, Ruditapes philippinarum, and Meretrix meretrix) along the Jiangsu Province coastline remain largely unexplored. In this study, a validated hydrophilic interaction liquid chromatography–tandem mass spectrometry(HILIC-MS/MS) method was used to examine PST profiles and levels in 540 clam samples from natural production areas along Jiangsu Province coastline during2014–2016. Although the PST levels(≤6.38 μg saxitotoxin equivalents(eq)/kg) were consistently below European Union regulatory limits(≤800 μg saxitotoxin eq/kg) during this time period, saxitotoxin, decarbamoylsaxitotoxin,and gonyautoxins 1 and 4 were detected, and nearly 40% of the samples were saxitotoxin-positive. The PST levels also varied significantly by seasons, with peak values observed in May during 2014–2016. This is the first systematic report of PSTs in clams from Jiangsu Province, and additional research and protective measures are needed to ensure the safety of clams harvested in this area.展开更多
A 12-month program of monitoring potentially toxic microalgae(that produce lipophilic shellfi sh toxins; LSTs) and their toxins in bivalves was conducted from April 2006 to March 2007 in the Nanji Islands, East China ...A 12-month program of monitoring potentially toxic microalgae(that produce lipophilic shellfi sh toxins; LSTs) and their toxins in bivalves was conducted from April 2006 to March 2007 in the Nanji Islands, East China Sea. Two Dinophysis species, D. caudata and D. acuminata, were identifi ed, and D. caudat a was found to be the dominant species. D. caudata was detected in water samples between April and June 2006, and between February and March 2007. It reached its highest abundances in May, with a mean abundance of 1.38×10 2 cells/L in surface water and 1.25×10 2 cells/L in bottom water(<10 m deep). The temporal distribution of D. caudata was associated with the occurrence of LSTs in bivalve samples, which mostly occurred at the same time as D. caudata blooms, between April and July 2006. All of the cultured bivalves sampled between April and June were contaminated with LSTs, with an average toxicity of 85 μg okadaic acid(OA) eq./100 g meat, which was four times higher than the Chinese regulatory limit(20 μg OA eq./100 g meat). Ten out of fi fteen wild samples(66.7%) collected during the same period were positive for LSTs, and contained an average LST toxicity of 45 μg OA eq./100 g meat(more than twice the regulatory value). Cultured Patinopecten yessoensis collected on 15 May 2006 had the highest toxicity, 320 μg OA eq./100 g meat, and relatively high toxicities(80 to 160 μg OA eq./100 g meat) were found in bivalves until the end of July.展开更多
We measured the organic content and sinking velocities of biodeposits from two scallop species(Chlamys farreri,Patinopecten yessoensis) and abalone(Haliotis discus hannai) that were cultured on suspended long-lines.Me...We measured the organic content and sinking velocities of biodeposits from two scallop species(Chlamys farreri,Patinopecten yessoensis) and abalone(Haliotis discus hannai) that were cultured on suspended long-lines.Measurements were conducted every two months from April 2010 to February 2011.The shellfish were divided into three size groups(small,middle,and big sizes).At each sample point,we assessedbiodeposit organic content,average sinking velocity,the frequency distribution of sinkingvelocities,and the correlation between organic content and sinking velocity.The organic content of biodeposits varied significantly among months(P<0.05) and the pattern of change varied among species.Sinking velocities varied significantly,ranging from <0.5 cm/s to >1.9 cm/s.The sinking velocities of biodeposits from C.farreri and P.yessoensis were 0.5-1.5 cm/s and from H.discus hannai were <0.7 cm/s.The organic content was significantly negatively correlated to the sinking velocity of biodeposits in C.farreri(P<0.001) and P.yessoensis(P<0.05).展开更多
The process of ultrafiltration(UF)of natural seawater often encounters the problems of variation in water quality and coastal blooms.To validate the feasibility of UF in shellfish farms,this study compared the hydraul...The process of ultrafiltration(UF)of natural seawater often encounters the problems of variation in water quality and coastal blooms.To validate the feasibility of UF in shellfish farms,this study compared the hydraulic performance and pollutant removal efficiency of the UF process with those of the commonly used treatments that combine several filtration steps with ultraviolet(UV)disinfection.The comparison was conducted in the cases of natural seawater and a coastal bloom.Given that the UF process encountered the specific type of pollution,this study evaluated the filtration performance of the UF process and the retention of total suspended solids(TSS),bacteria,phytoplankton,and zooplankton.A real coastal bloom was considered in the case study of an experimental shellfish hatchery/nursery in France.The results show that both treatments were able to eliminate approximately 50%of TSS.However,in contrast with UV treatment combined with filtration,the UF process retained total amounts of phytoplankton,zooplankton,and bacteria in the bloom.Although the hydraulic performance of the UF process was impacted by the coastal bloom,the fouling was eliminated through chemical cleaning conducted at a frequency less than once per 12 h.Despite the severe pollution,this study confirmed the pollution resistance and treatment performance of the UF process,indicating that UF has the potential to enhance the biosecurity level.展开更多
Dissected tissues of three shellfish species, the Chinese scallop, Chlamys farreri, Manila clam, Ruditapes philippinarurn, and Razor shell, Solen strictu were evaluated for in vitro transformation of paralytic shellfi...Dissected tissues of three shellfish species, the Chinese scallop, Chlamys farreri, Manila clam, Ruditapes philippinarurn, and Razor shell, Solen strictu were evaluated for in vitro transformation of paralytic shellfish poisoning (PSP) toxins. Tissue homogenates were incubated with extraction from toxic algae Alexandriurn rninutura to determine toxin conversion. The effects of heating and addition of a natural reductant (glutathione) on toxin conversion were also assessed. The toxin profile was investigated through high performance liquid chromatography with fluorescence detection (HPLC-FLD). The evident variations in the toxin content were observed only in Chinese scallop viscera homogenates. The concentration of GTX4 was reduced by 45% (approximately 0.8 μmol/dm^3) and 25% (approximately 1 μmol/dm^3) for GTX1, while GTX2 and GTX3 increased by six times (approximately 1 μmol/dm^3) and 3 times (approximately 0.3μmol/dm^3) respectively. Simultaneously, the total toxicity decreased by 38% during the 48 h incubation period, the final toxicity was 20.4 nmol STXeq/g. Furthermore, heated Chinese scallop viscera homogenates samples were compared with non-heated samples. The concentration of the GTX4 and GTX1 was clearly 28% (approximately 0.53 μmol/dm^3) and 17% (approximately 0.69μmol/dm^3) higher in heated samples, GTX2 and GTX3 were four times (0.66 μmol/dm^3) and two times (0.187 μmol/dm^3) lower respectively. GSH (+) Chinese scallop viscera homogenates samples were compared with GSH (-) samples, the concentration in the GTX4 and GTX1 was 9% (approximately 0.12 μmol/dm^3) and 11% (approximately 0.36 μmol/dm^3) lower respectively, GTX2 and GTX3 was 17% (approximately 0.14 μmol/dm^3) and 19% (approximately 0.006 μmol/dm^3) higher respectively. In contrast,there was a little change in the concentration of PSP toxins of Manila clam and Razor shell tissue ho- mogenates. These observations on three shellfish tissues confirmed that there were species-specific differences in PSP toxins transformation. PSP toxins transformation was more pronounced in viscera tissue than in muscle tissue. PSP toxins was possibly interfered by some carbamoylase enzyme, and the activity in Chinese scallop viscera tissue is more remarkable than in the other two species.展开更多
Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidi...Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides.展开更多
An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing ...An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.展开更多
Based on the investigation on shellfish resources from the intertidal zone to subtidal zone of Fenjiezhou Island,Hainan during 2012-2014,the quantity,species,ecological distribution and floristic characters of shellfi...Based on the investigation on shellfish resources from the intertidal zone to subtidal zone of Fenjiezhou Island,Hainan during 2012-2014,the quantity,species,ecological distribution and floristic characters of shellfish from the intertidal zone to subtidal zone of Fenjiezhou Island were analyzed.The results showed that a total of 137 shellfish species were found in Fenjiezhou Island,and they belonged to 4 classes [Polyplacophora(1 species),Gastropoda(94 species),Bivalvia(40species),Cephalopoda(2 species)],13 orders and 44 families.Among the families,Cypraeidae included 11 species,Muricacea included 9 species,Veneracea included9 species,Conidae included 8 species,Strombidae included 6 species,Cymatiidae included 6 species,and the other families all included less than 5 species.According to the characteristics of the components,most of the species belonged to the tropical or subtropical region,and they had a close relationship with coral reef.According to the floristic characters,the shellfish in Fenjiezhou Island belonged to the Indonesia-Malayan Subregion of Indo-West Pacific Region.展开更多
Eelgrass species worldwide are valued for the ecosystem service they provide to estuarine and marine habitats. One species, Zostera japonica, however, has some negative impacts outside its native range and is consider...Eelgrass species worldwide are valued for the ecosystem service they provide to estuarine and marine habitats. One species, Zostera japonica, however, has some negative impacts outside its native range and is considered invasive. In Willapa Bay WA, USA, the nonnative eelgrass has expanded to the level where the shellfish industry is concerned about its potential impacts on its livelihood. Studies were conducted using paired plots, Z. japonica controlled with the herbicide imazamox vs. untreated controls, to assess the effects of Z. japonica on Manila clams (Ruditapes philippinarum) and Pacific oysters (Crassostrea gigas). Recruitment of new Manila clams was not affected by Z. japonica. The growth of young clams, total commercial clam harvests, clam quality and clam harvest efficiency, however, were greater on plots where Z. japonica was chemically controlled than where it was not treated. The response of oysters to Z. japonica control varied by site;there was no effect at one site, while the other sites had a 15% increase in shucked meat with Z. japonica control. The potential economic impact of a Z. japonica infestation of a shellfish bed was ~$47,000 ha-1 for Manila clams and $4000 ha-1 for oysters for each crop harvest cycle.展开更多
To study the paralytic shellfish toxins(PSTs) depuration in Japanese scallop Patinopecten yessoensis in natural environment, Japanese scallops naturally contaminated with paralytic shellfish poisoning(PSP) toxins ...To study the paralytic shellfish toxins(PSTs) depuration in Japanese scallop Patinopecten yessoensis in natural environment, Japanese scallops naturally contaminated with paralytic shellfish poisoning(PSP) toxins in the Dayao Bay in the northern Huanghai Sea are transited to Qipanmo waters in the Bohai Sea of no reported PSTs incidents. The levels and profile of PSTs during 30-day depuration are detected by the high performance liquid chromatography with fluorescence detection(HPLC-FLD). The results show that the toxicity of the PSTs in soft tissues decreases to a relatively low level at Day 9. Moreover, the depurated ratio at the early stage of the PSTs depuration is higher than that at the later stage. The toxicity analysis of dissected organs reveals that the digestive gland is the most contaminated PSTs part, which is of important implication for the human health and scallop aquiculture. The mortality of Japanese scallops during PSTs depuration experiment is relevant to PSTs level in the soft tissue.展开更多
Objective To develop an ICR (female) mouse bioassay (MBA) for toxicity confirmation and evaluation of neurotoxins (brevetoxins)-contaminated shellfish. Methods Brevetoxins (BTX-B) as a causative agent of neuro...Objective To develop an ICR (female) mouse bioassay (MBA) for toxicity confirmation and evaluation of neurotoxins (brevetoxins)-contaminated shellfish. Methods Brevetoxins (BTX-B) as a causative agent of neurotoxic shellfish poisoning (NSP) under different shellfish matrices were intraperitoneally injected at different doses into mice to study their toxic effects and to differentiate the range of lethal and sublethal dosages. Their sensitivity and specificity were analyzed with 2 competitive ELISA kits for quantitative determination of standard BTX-B and dihydroBTX-B under different shellfish matrix-diluent combinations. Detection rates of MBA and two antibody-based assays for BTX-B from field NSP-positive shellfish samples were compared. Results BTX-B could be detected in shellfish tissues at concentration of 50-400 μg/100 g under shellfish matrix-Tween-saline media, which were appropriate to identify toxic shellfish at or above the regulatory limit (80 μg/100 g shellfish tissues). The LD 50 identified was 455 g/kg for BTX-B under general shellfish matrices (excluding oyster matrices) dissolved in Tween-saline. The presence of shellfish matrices, of oyster matrices in particular, retarded the occurrence of death and toxicity presentation in mice. Two antibody-based assays, even in the presence of different shellfish matrix-diluent combinations, showed acceptable results in quantifying BTX-B and dihydroBTX-B well below the regulatory limit. Conclusion The two ELISA analyses agree favorably (correlation coefficient, r 0.96; Student's t-tests, P〉0.05) with the developed bioassay.展开更多
基金The work was supported by National Basic Research Project No. 2001 CB409700, NNSFC KZCX2-YW-208.
文摘Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense→Artemia Artemia salina→Mysid shrimp Neomysis awatschensis; A. tamarense→N. awatschensis; A. tamarense→A, salina→Perch Lateolabrax japonicus; and A. tamarense→L, japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels in the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly through the vector of A. salina was then studied, The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells·mL^-1) for 70 minutes, the content of Chl.a in A. salina and N. awatschensis reached 0.87 and 0.024 μg.mg^-1, respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU.g^-1, respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in anemia sample collected on the 1st day was estimated to be 1.65×10 ^5 μg STX equal/individual. Toxin accumulation in L japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly from the vector ofA. salina was also studied. The mice injected with extracts from L japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. tamarense directly or indirectly via the food chains.
文摘Objective Shellfish are recognized as important vehicles of norovirus-associated gastroenteritis. The present study aimed to monitor norovirus contamination in oysters along the farm-to-fork continuum in Guangxi, a major oyster production area in Southwestern China. Methods Oyster samples were collected monthly from farms, markets, and restaurants, from January to December 2016. Norovirus was detected and quantified by one-step reverse transcription-droplet digital polymerase chain reaction(RT-ddPCR). Results A total of 480 oyster samples were collected and tested for norovirus genogroups I and II. Norovirus was detected in 20.7% of samples, with genogroup II predominating. No significant difference was observed in norovirus prevalence among different sampling sites. The norovirus levels varied widely, with a geometric mean of 19,300 copies/g in digestive glands. Both norovirus prevalence and viral loads showed obvious seasonality, with a strong winter bias. Conclusion This study provides a systematic analysis of norovirus contamination ‘from the farm to the fork' in Guangxi. RT-ddPCR can be a useful tool for detection and quantification of low amounts of norovirus in the presence of inhibitors found particularly in foodstuffs. This approach will contribute to the development of strategies for controlling and reducing the risk of human illness resulting from shellfish consumption.
文摘AIM: To assess current practice of United Kingdom cardiologists with respect to patients with reported shellfish/iodine allergy, and in particular the use of iodinated contrast for elective coronary angiography.Moreover we have reviewed the current evidence-base and guidelines available in this area.METHODS: A questionnaire survey was send to 500senior United Kingdom cardiologists(almost 50% cardiologists registered with British Cardiovascular Society)using email and first 100 responses used to analyze practise. We involved cardiologists performing coronary angiograms routinely both at secondary and tertiary centres. Three specific questions relating to allergy were asked:(1) History of shellfish/iodine allergy in pre-angiography assessment;(2) Treatments offeredfor shellfish/iodine allergy individuals; and(3) Any specific treatment protocol for shellfish/iodine allergy cases. We aimed to establish routine practice in United Kingdom for patients undergoing elective coronary angiography. We also performed comprehensive PubMed search for the available evidence of relationship between shellfish/iodine allergy and contrast media.RESULTS: A total of 100 responses were received, representing 20% of all United Kingdom cardiologists. Ninety-three replies were received from consultant cardiologists, 4 from non-consultant grades and 3 from cardiology specialist nurses. Amongst the respondents, 66% routinely asked about a previous history of shellfish/iodine allergy. Fifty-six percent would pre-treat these patients with steroids and anti-histamines. The other 44% do nothing, or do nonspecific testing based on their personal experience as following:(1) Skin test with 1 mL of subcutaneous contrast before intravenous contrast;(2) Test dose 2 mL contrast before coronary injection;(3) Close observation for shellfish allergy patients; and(4) Minimal evidence that the steroid and anti-histamine regime is effective but it makes us feel better.CONCLUSION: There is no evidence that allergy to shellfish alters the risk of reaction to intravenous contrast more than any other allergy and asking about such allergies in pre-angiogram assessment will not provide any additional information except propagating the myth.
基金Supported by Research Project of Public Welfare,Ministry of Science and Technology of China (2005DIB3J021)
文摘To analyze and evaluate the status of organochlorine pollutants in the Changjiang (Yangtze River) estuary and adjacent waters, the concentrations of hexachlorocyclohexane (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in shellfish collected in study area from 2006 to 2007 were determined with gas chromatography (GC). The concentration range of HCHs was (ND-12.13)×10^-3 mg/kg wet weight and averaged at 0.54×10^-3 mg/kg while the concentration of DDTs was in the range of (4.06-281.73) ×10^-3 mg/kg with a mean of 57.52×10^-3 mg/kg in the survey areas. The concentrations of DDTs in the shellfish were higher than HCHs', so that DDTs could be considered as typical organochlorine pollutants in the areas. The concentrations of DDTs in the shellfish were higher than HCHs', so that DDTs could be considered as typical organochlorines pollutants. The HCHs in all the shellfish conformed to the first level of criterion (0.02 mg/kg) of the Marion Biology Quality (GB 18421-2001), and that of DDTs in most samples were beyond the first level (0.01 mg/kg) but conformed to the second level (0.10 mg/kg). On average, α-HCH and δ-HCH occupied the most part of HCHs, while O,P'-DDT and P,P'-DDT occupied the most part of DDTs. The concentrations of organocholorine pesticides in shellfish samples varied in site and in species. The highest level occurred at the Shengsi (SS), followed by Yangkougang (YKG), Lvsi (LS), Dongyuan (DY) and Beibayao (BBY), low concentrations were observed at Changsha (CS), Beidaodi (BDD), and Gouqi (GQ). The concentration of HCHs and DDTs in most sites decreased clearly from 2006 to 2007 except for YKG, DY, BDD, LYS, and SS. All of above results suggested that the study area was slightly affected by organochlorine pesticide, special by DDTs.
基金funded by the National Key R&D Project(No.2019YFC1605704)the Taishan Industry Leading Talent Project(No.LJNY201816)supported by Sanya Yazhou Bay Science and Technology City(No.SKJCKJ-2019KY01).
文摘Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to decrease poisoning events in bivalve consuming.PSTs are traditionally examined using the whole soft-tissues.However,PSTs accumulation varies dramatically in different tissues of bivalves.Some tough tissues/organs(such as mantle),which account for a large proportion of the total soft body,exhibit a lower accumulation of PSTs and make the toxin extraction time-and reagent-consuming,potentially decreasing the accuracy and sensitivity of PSTs monitoring in bivalves.To develop a sensitive and cost-effective approach for PSTs examination in massively farmed bivalves,we fed three commercially important bivalves,Yesso scallop Patinopecten yessoensis,Pacific oyster Crassostrea gigas,and blue mussel Mytilus edulis with PSTs-producing dinoflagellate Alexandrium catenella,and detected PSTs concentration in different tissues.For all three bivalve species,the digestive gland accumulated much more PSTs than other tissues,and the digestive gland’s toxicity was significantly correlated with the PSTs toxicity of the whole soft-tissues,with r^(2)=0.94,0.92,and 0.94 for Yesso scallop,Pacific oyster,and blue mussel,respectively.When the toxicity of the whole soft-tissues reached 80μgSTXeq(100g)^(−1),the regulatory limit for commercial shellfish,the digestive gland’s toxicity reached 571.48,498.90,and 859.20μgSTXeq(100g)^(−1) in Yesso scallop,Pacific oyster,and blue mussel,respectively.Our results indicate that digestive gland can be used for the sensitive and cost-effective monitoring of PSTs in bivalves.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2007AA092001-15)the Key Laboratory of Marine Integrated Monitoring and Applied Technologies of Harmful Algal Blooms,Chinese State Oceanic Administration(No.MATHAB20120101)the Shanghai Municipal Oceanic Bureau(Nos.2011-02,2012-02)
文摘The current testing for paralytic shellfish poisoning(PSP) in shellfish is based on the mouse bioassay(MBA).To alleviate animal welfare concerns,we evaluated the utility of using sublethal indicators of toxicity as an alternative to measuring time to death.Live mice were injected with a PSP congener and the changes in neurotransmitter levels were measured 60,90,and 120 min after injection.Acetylcholine(ACh) was the most sensitive marker for PSP toxicity.The changes in neurotransmitter levels were most pronounced in the blood.Thus,measurement of Ach levels in the blood may serve as a sensitive predictor for PSP that would not require sacrifice of the mice.This method was relatively simple,sensitive(less than 1 μg/kg weight,equivalent to 20 ng/mL),low maintenance,and rapid(less than 60 min).
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201305007 and 201405017
文摘Paralytic shellfish toxins(PSTs) are notorious neurotoxins that threaten public health and food safety worldwide.Although PST monitoring programs have recently been established throughout China, the profiles and variation of PSTs in important commercial clams(e.g., Mactra veneriformis, Ruditapes philippinarum, and Meretrix meretrix) along the Jiangsu Province coastline remain largely unexplored. In this study, a validated hydrophilic interaction liquid chromatography–tandem mass spectrometry(HILIC-MS/MS) method was used to examine PST profiles and levels in 540 clam samples from natural production areas along Jiangsu Province coastline during2014–2016. Although the PST levels(≤6.38 μg saxitotoxin equivalents(eq)/kg) were consistently below European Union regulatory limits(≤800 μg saxitotoxin eq/kg) during this time period, saxitotoxin, decarbamoylsaxitotoxin,and gonyautoxins 1 and 4 were detected, and nearly 40% of the samples were saxitotoxin-positive. The PST levels also varied significantly by seasons, with peak values observed in May during 2014–2016. This is the first systematic report of PSTs in clams from Jiangsu Province, and additional research and protective measures are needed to ensure the safety of clams harvested in this area.
基金Supported by the National Marine Public Welfare Research Project of China(No.201305010)the National Natural Science Foundation of China(No.41106090)+5 种基金the Open Foundation of Key Laboratory of Marine Bio-resources Sustainable Utilization,Chinese Academy of Sciences(No.LMB111003)the Special Fund for Basic Scientific Research of Central Universities(No.21612401)the Natural Science Foundation of Guangdong Province(No.S2011040003113)the National Basic Research Program of China(973 Program)(No.2013CB956503)the Special Project for Science and Technology of Environmental Protection of Zhejiang Province(No.2011A31)the Wenzhou Science and Technology Plan Program(No.S2006A007)
文摘A 12-month program of monitoring potentially toxic microalgae(that produce lipophilic shellfi sh toxins; LSTs) and their toxins in bivalves was conducted from April 2006 to March 2007 in the Nanji Islands, East China Sea. Two Dinophysis species, D. caudata and D. acuminata, were identifi ed, and D. caudat a was found to be the dominant species. D. caudata was detected in water samples between April and June 2006, and between February and March 2007. It reached its highest abundances in May, with a mean abundance of 1.38×10 2 cells/L in surface water and 1.25×10 2 cells/L in bottom water(<10 m deep). The temporal distribution of D. caudata was associated with the occurrence of LSTs in bivalve samples, which mostly occurred at the same time as D. caudata blooms, between April and July 2006. All of the cultured bivalves sampled between April and June were contaminated with LSTs, with an average toxicity of 85 μg okadaic acid(OA) eq./100 g meat, which was four times higher than the Chinese regulatory limit(20 μg OA eq./100 g meat). Ten out of fi fteen wild samples(66.7%) collected during the same period were positive for LSTs, and contained an average LST toxicity of 45 μg OA eq./100 g meat(more than twice the regulatory value). Cultured Patinopecten yessoensis collected on 15 May 2006 had the highest toxicity, 320 μg OA eq./100 g meat, and relatively high toxicities(80 to 160 μg OA eq./100 g meat) were found in bivalves until the end of July.
基金Supported by the National Key Technology Research and Development Program of China(No.2011BAD13B06)the National Natural Science Foundation of China(No.41276172)the Special Scientific Research Funds For Central Non-Profit Institute,CAFS(No.2014A01YY01)
文摘We measured the organic content and sinking velocities of biodeposits from two scallop species(Chlamys farreri,Patinopecten yessoensis) and abalone(Haliotis discus hannai) that were cultured on suspended long-lines.Measurements were conducted every two months from April 2010 to February 2011.The shellfish were divided into three size groups(small,middle,and big sizes).At each sample point,we assessedbiodeposit organic content,average sinking velocity,the frequency distribution of sinkingvelocities,and the correlation between organic content and sinking velocity.The organic content of biodeposits varied significantly among months(P<0.05) and the pattern of change varied among species.Sinking velocities varied significantly,ranging from <0.5 cm/s to >1.9 cm/s.The sinking velocities of biodeposits from C.farreri and P.yessoensis were 0.5-1.5 cm/s and from H.discus hannai were <0.7 cm/s.The organic content was significantly negatively correlated to the sinking velocity of biodeposits in C.farreri(P<0.001) and P.yessoensis(P<0.05).
基金This work was supported by Fonds Europeen Pour les Affaires Maritimes et la P^eche(FEAMP)(Grant No.R FEA 4700 16FA 1000001).
文摘The process of ultrafiltration(UF)of natural seawater often encounters the problems of variation in water quality and coastal blooms.To validate the feasibility of UF in shellfish farms,this study compared the hydraulic performance and pollutant removal efficiency of the UF process with those of the commonly used treatments that combine several filtration steps with ultraviolet(UV)disinfection.The comparison was conducted in the cases of natural seawater and a coastal bloom.Given that the UF process encountered the specific type of pollution,this study evaluated the filtration performance of the UF process and the retention of total suspended solids(TSS),bacteria,phytoplankton,and zooplankton.A real coastal bloom was considered in the case study of an experimental shellfish hatchery/nursery in France.The results show that both treatments were able to eliminate approximately 50%of TSS.However,in contrast with UV treatment combined with filtration,the UF process retained total amounts of phytoplankton,zooplankton,and bacteria in the bloom.Although the hydraulic performance of the UF process was impacted by the coastal bloom,the fouling was eliminated through chemical cleaning conducted at a frequency less than once per 12 h.Despite the severe pollution,this study confirmed the pollution resistance and treatment performance of the UF process,indicating that UF has the potential to enhance the biosecurity level.
基金The International cooperation programs of the Ministry of Science and Technology of China under contract No.2007DFA30710the Society commonweal programs of the Ministry of Science and Technology of China under contract No.2005DIB2J116
文摘Dissected tissues of three shellfish species, the Chinese scallop, Chlamys farreri, Manila clam, Ruditapes philippinarurn, and Razor shell, Solen strictu were evaluated for in vitro transformation of paralytic shellfish poisoning (PSP) toxins. Tissue homogenates were incubated with extraction from toxic algae Alexandriurn rninutura to determine toxin conversion. The effects of heating and addition of a natural reductant (glutathione) on toxin conversion were also assessed. The toxin profile was investigated through high performance liquid chromatography with fluorescence detection (HPLC-FLD). The evident variations in the toxin content were observed only in Chinese scallop viscera homogenates. The concentration of GTX4 was reduced by 45% (approximately 0.8 μmol/dm^3) and 25% (approximately 1 μmol/dm^3) for GTX1, while GTX2 and GTX3 increased by six times (approximately 1 μmol/dm^3) and 3 times (approximately 0.3μmol/dm^3) respectively. Simultaneously, the total toxicity decreased by 38% during the 48 h incubation period, the final toxicity was 20.4 nmol STXeq/g. Furthermore, heated Chinese scallop viscera homogenates samples were compared with non-heated samples. The concentration of the GTX4 and GTX1 was clearly 28% (approximately 0.53 μmol/dm^3) and 17% (approximately 0.69μmol/dm^3) higher in heated samples, GTX2 and GTX3 were four times (0.66 μmol/dm^3) and two times (0.187 μmol/dm^3) lower respectively. GSH (+) Chinese scallop viscera homogenates samples were compared with GSH (-) samples, the concentration in the GTX4 and GTX1 was 9% (approximately 0.12 μmol/dm^3) and 11% (approximately 0.36 μmol/dm^3) lower respectively, GTX2 and GTX3 was 17% (approximately 0.14 μmol/dm^3) and 19% (approximately 0.006 μmol/dm^3) higher respectively. In contrast,there was a little change in the concentration of PSP toxins of Manila clam and Razor shell tissue ho- mogenates. These observations on three shellfish tissues confirmed that there were species-specific differences in PSP toxins transformation. PSP toxins transformation was more pronounced in viscera tissue than in muscle tissue. PSP toxins was possibly interfered by some carbamoylase enzyme, and the activity in Chinese scallop viscera tissue is more remarkable than in the other two species.
基金supported by the National Key R&D Program of China(No.2018YFD0901004)the National Natural Science Foundation of China(No.31601538)+2 种基金the Key Science and Technology Program of Liaoning Province(No.2020JH1/10200001)the Fundamental Research Foundation of Education Department of Liaoning Province(No.JL202008)the Science&Technology Innovation Foundation of Dalian(No.2019J12SN61).
文摘Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides.
基金Supported by a thesis research project of General Administration of Quality Supervision, Inspection and Quarantine of China (No. 2010IK168)
文摘An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.
文摘Based on the investigation on shellfish resources from the intertidal zone to subtidal zone of Fenjiezhou Island,Hainan during 2012-2014,the quantity,species,ecological distribution and floristic characters of shellfish from the intertidal zone to subtidal zone of Fenjiezhou Island were analyzed.The results showed that a total of 137 shellfish species were found in Fenjiezhou Island,and they belonged to 4 classes [Polyplacophora(1 species),Gastropoda(94 species),Bivalvia(40species),Cephalopoda(2 species)],13 orders and 44 families.Among the families,Cypraeidae included 11 species,Muricacea included 9 species,Veneracea included9 species,Conidae included 8 species,Strombidae included 6 species,Cymatiidae included 6 species,and the other families all included less than 5 species.According to the characteristics of the components,most of the species belonged to the tropical or subtropical region,and they had a close relationship with coral reef.According to the floristic characters,the shellfish in Fenjiezhou Island belonged to the Indonesia-Malayan Subregion of Indo-West Pacific Region.
文摘Eelgrass species worldwide are valued for the ecosystem service they provide to estuarine and marine habitats. One species, Zostera japonica, however, has some negative impacts outside its native range and is considered invasive. In Willapa Bay WA, USA, the nonnative eelgrass has expanded to the level where the shellfish industry is concerned about its potential impacts on its livelihood. Studies were conducted using paired plots, Z. japonica controlled with the herbicide imazamox vs. untreated controls, to assess the effects of Z. japonica on Manila clams (Ruditapes philippinarum) and Pacific oysters (Crassostrea gigas). Recruitment of new Manila clams was not affected by Z. japonica. The growth of young clams, total commercial clam harvests, clam quality and clam harvest efficiency, however, were greater on plots where Z. japonica was chemically controlled than where it was not treated. The response of oysters to Z. japonica control varied by site;there was no effect at one site, while the other sites had a 15% increase in shucked meat with Z. japonica control. The potential economic impact of a Z. japonica infestation of a shellfish bed was ~$47,000 ha-1 for Manila clams and $4000 ha-1 for oysters for each crop harvest cycle.
基金The National Natural Science Foundation of China under contract No.30470275the National Special Grant of China under contract Nos 908-01-ZH3 and 908-ZC-I-15the National Basic Research Grant of China under contract No.2010CB428706
文摘To study the paralytic shellfish toxins(PSTs) depuration in Japanese scallop Patinopecten yessoensis in natural environment, Japanese scallops naturally contaminated with paralytic shellfish poisoning(PSP) toxins in the Dayao Bay in the northern Huanghai Sea are transited to Qipanmo waters in the Bohai Sea of no reported PSTs incidents. The levels and profile of PSTs during 30-day depuration are detected by the high performance liquid chromatography with fluorescence detection(HPLC-FLD). The results show that the toxicity of the PSTs in soft tissues decreases to a relatively low level at Day 9. Moreover, the depurated ratio at the early stage of the PSTs depuration is higher than that at the later stage. The toxicity analysis of dissected organs reveals that the digestive gland is the most contaminated PSTs part, which is of important implication for the human health and scallop aquiculture. The mortality of Japanese scallops during PSTs depuration experiment is relevant to PSTs level in the soft tissue.
文摘Objective To develop an ICR (female) mouse bioassay (MBA) for toxicity confirmation and evaluation of neurotoxins (brevetoxins)-contaminated shellfish. Methods Brevetoxins (BTX-B) as a causative agent of neurotoxic shellfish poisoning (NSP) under different shellfish matrices were intraperitoneally injected at different doses into mice to study their toxic effects and to differentiate the range of lethal and sublethal dosages. Their sensitivity and specificity were analyzed with 2 competitive ELISA kits for quantitative determination of standard BTX-B and dihydroBTX-B under different shellfish matrix-diluent combinations. Detection rates of MBA and two antibody-based assays for BTX-B from field NSP-positive shellfish samples were compared. Results BTX-B could be detected in shellfish tissues at concentration of 50-400 μg/100 g under shellfish matrix-Tween-saline media, which were appropriate to identify toxic shellfish at or above the regulatory limit (80 μg/100 g shellfish tissues). The LD 50 identified was 455 g/kg for BTX-B under general shellfish matrices (excluding oyster matrices) dissolved in Tween-saline. The presence of shellfish matrices, of oyster matrices in particular, retarded the occurrence of death and toxicity presentation in mice. Two antibody-based assays, even in the presence of different shellfish matrix-diluent combinations, showed acceptable results in quantifying BTX-B and dihydroBTX-B well below the regulatory limit. Conclusion The two ELISA analyses agree favorably (correlation coefficient, r 0.96; Student's t-tests, P〉0.05) with the developed bioassay.