Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method ba...Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
3D digital design for cranes’ structures based on hybrid software architecture of Client/Server and Browser/Server is introduced in this paper. Based on Pro/ENGINEER platform,3D parametric model family is built to al...3D digital design for cranes’ structures based on hybrid software architecture of Client/Server and Browser/Server is introduced in this paper. Based on Pro/ENGINEER platform,3D parametric model family is built to allow generation of feasible configurations of cranes’ structures in Client/Server framework. Taking use of Visual C++,the second exploiting software kit provided by Pro/ENGINEER and ANSYS GUI/APDL modeling patterns,an integration method of 3D CAD and CAE is achieved,which includes regeneration of 3D parametric model,synchronous updating and analysis of FEA model. As in Browser/Server framework,the 3D CAD models of parts,components and the whole structure could also be displayed in the customer’s browser in VRML format.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bea...A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bearings is developed. Then, seismic isolation studies are performed for both double-layer and single-layer lattice shell structures under different seismic input and design parameters of the FPS. The influence of frictional coefficients and radius of the FPS on seismic performance are discussed. Based on the study, some suggestions for seismic isolation design of lattice shells with FPS bearings are given and conclusions are made which could be helpful in the application of FPS.展开更多
Non-spherical Cu@Cu S yolk–shell structures are successfully obtained using Cu_2 O cube templates in a process combining rapid surface sulfidation followed by disproportionation of the Cu_2 O core upon treatment with...Non-spherical Cu@Cu S yolk–shell structures are successfully obtained using Cu_2 O cube templates in a process combining rapid surface sulfidation followed by disproportionation of the Cu_2 O core upon treatment with a hydrochloric acid solution. By employing the above method,Cu@Cu S yolk–shell structures with different morphologies,including octahedral, truncated octahedral, and cuboctahedral shapes, can be synthesized. The void space within the hollow structures provides a unique confined space, where the metallic copper present in the core of a shell can be protected from agglomeration and oxidation. Furthermore,the presence of metal copper in these hollow structurescontributes to improvement in the photocatalytic properties of these materials. The application of these Cu@Cu S structures indeed shows clearly improved photocatalytic performance.展开更多
A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi...A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications.展开更多
Reticulated shell structures (RSSs) are characterized as cyclically periodic structures. Mistuning of RSSs will induce structural mode localization. Mode localization has the following two features: some modal vect...Reticulated shell structures (RSSs) are characterized as cyclically periodic structures. Mistuning of RSSs will induce structural mode localization. Mode localization has the following two features: some modal vectors of the structure change remarkably when the values of its physical parameters (mass or stiffness) have a slight change; and the vibration of some modes is mainly restricted in some local areas of the structure. In this paper, two quantitative assessment indexes are introduced that correspond to these two features. The first feature is studied through a numerical example of a RSS, and its induced causes are analyzed by using the perturbation theory. The analysis showed that internally, mode localization is closely related to structural frequencies and externally, slight changes of the physical parameters of the structure cause instability to the RSS. A scaled model experiment to examine mode localization was carried out on a Kiewit single-layer spherical RSS, and both features of mode localization are studied. Eight tests that measured the changes of the physical parameters were carried out in the experiment. Since many modes make their contribution in structural dynamic response, six strong vibration modes were tested at random in the experimental analysis. The change and localization of the six modes are analyzed for each test. The results show that slight changes to the physical parameters are likely to induce remarkable changes and localization of some modal vectors in the RSSs.展开更多
Since the guarantee of trustiness is considered inadequate in traditional software development methods,software developed using these methods lacks effective measures for ensuring its trustiness.Combining agent techni...Since the guarantee of trustiness is considered inadequate in traditional software development methods,software developed using these methods lacks effective measures for ensuring its trustiness.Combining agent technique with the support of trusted computing provided by TPM,a trust-shell-based constitution model of trusted software(TSCMTS)is demonstrated,trust shell ensures the trustiness of software logically.The concept of Trust Engine is proposed,which extends the "chain of trust" of TCG into application,and cooperates with TPM to perform integrity measurement for software entity to ensure the static trustiness;Data Structure called trust view is defined to represent the characteristic of software behavior.For the purpose of improving the accuracy of trustiness constraints,a strategy for determining the weights of characteristic attributes based on information entropy is proposed.Simulation experiments illustrate that the trustiness of software developed by the TSCMTS is improved effectively without performance degradation.展开更多
To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poinee...To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poineered and developed to provide an ininprocess active control of welding distortion. Satisfactory distortion free results were achieved in both welding of jet engine cases of heat-resistance alloys and rocket fuel tanks of aluminuim alloys, and there need no. reworking operations for post-weld distortion correction. Based on the 'static' method a newly developed method for dvnamic in-process control is also discussed in this paper. Both methods provide quanutiative in-process control of incompatible strains in weld zone and low stress no distortion welding results.展开更多
Palm kernel shell(PKS)biochars with different levels of carbon conversion were initially prepared using a tube furnace,after which the reactivity of each sample was assessed with a thermogravimetric analyzer under a C...Palm kernel shell(PKS)biochars with different levels of carbon conversion were initially prepared using a tube furnace,after which the reactivity of each sample was assessed with a thermogravimetric analyzer under a CO_2 atmosphere.The pore structure and carbon ordering of each biochar also examined,employing a surface area analyzer and a Raman spectroscopy.Thermogravimetric results showed that the gasification index R_sof the PKS biochar decreased from 0.0305 min^(-1) at carbon conversion(x)=20% to 0.0278 min^(-1)at x=40%.The expansion of micropores was the dominant process during the pore structure evolution,ad mesopores with sizes ranging from 6 to 20,48 to 50 nm were primarily generated during gasification under a CO_2/H_2O mixture.The proportion of amorphous carbon in the PKS biochar decreased significantly as x increased,suggesting that the proportion of ordered carbon was increased during the CO_2/H_2O mixed gasification.A significantly reduced total reaction time was observed when employing a CO_2/intermittent H_2O process along with an 83.46% reduction in the steam feed,compared with the amount required using a CO_2/H_2O atmosphere.展开更多
With bamboo shoot shell nanofibers(BSN) and konjac glucomannan(KGM) as precursor materials, the BSN/KGM aerogels were prepared in different proportions by sol-gel method. The surface morphology, microstructure, ch...With bamboo shoot shell nanofibers(BSN) and konjac glucomannan(KGM) as precursor materials, the BSN/KGM aerogels were prepared in different proportions by sol-gel method. The surface morphology, microstructure, characteristic functional groups and thermal properties of BSN/KGM aerogels were characterized by scanning electron microscopy(SEM), infrared spectroscopy(IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The effect of BSN on the structure and properties of BSN/KGM aerogels was also studied. The results showed that the BSN/KGM aerogels possessed network porous structure with compact and homogeneous porosity, high specific surface area and low density. With the increase of BSN, the sheet structure of aerogels was converted into the 3D porous network structure, which contributes significantly higher thermal stability. In addition, the BSN/KGM aerogels showed excellent mechanical properties. The maximum relative compression rate was 62%, suggesting the addition of BSN can enhance the compression properties of the BSN/KGM aerogels.展开更多
[Objectives] This study was conducted to investigate the feasibility of using modified peanut dietary fiber as a functional food ingredient. [Methods]Using peanut shells as a test material,the process parameters of so...[Objectives] This study was conducted to investigate the feasibility of using modified peanut dietary fiber as a functional food ingredient. [Methods]Using peanut shells as a test material,the process parameters of soluble dietary fiber( SDF) modified by extrusion and expansion were studied,and the functional and structural characteristics of SDF before and after modification were discussed. [Results] The optimum conditions were as follows: screw speed 200 rpm,temperature 130 ℃ and moisture content 20 %,and the SDF extraction yield was 22. 3%. The modified SDF showed BCmax values of( 378. 5 ± 5. 3),( 278. 3 ± 3. 2)and( 167. 2 ± 2. 5) μmol/g and BCmin of( 30. 4 ± 1. 3),( 63. 4 ± 3. 7) and( 71. 3 ± 4. 2) μmol/L,for Pb,As and Cu,respectively,indicating that the adsorption to the three heavy metals was enhanced. The modified SDF had a porous network like honeycomb and swelled structure. [Conclusions]Therefore,it is feasible to modify SDF by extrusion and expansion.展开更多
Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite struc...Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.展开更多
Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmissio...Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.展开更多
The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the object...The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the objective function with the global stiffness constraint. In the layout optimization, the stiffeners should be placed at the locations with high strain energy/or stress. Conversely, elements of stiffeners with a small strain energy/or stress are considered to be used inefficiently and can be removed. Thus, to identify the element efficiency so that most inefficiently used elements of stiffeners can be removed, the element sensitivity of the strain energy of stiffeners is introduced, and a search criterion for locations of stiffeners is presented. The layout optimization approach is given for determining which elements of the stiffeners need to be kept or removed. In each iterative design, a high efficiency reanalysis approach is used to reduce the computational effort. The present approach is implemented for the layout optimization of stiffeners for a bunker loaded by the hydrostatic pressure. The numerical results show that the present approach is effective for dealing with layout optimization of stiffeners for plate-shell structures.展开更多
Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w...Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.展开更多
In this article we explored the crystal structure of a few pearls and shellfish's shell of fresh water and sea water, and found that pearls and nacreous layer (perhaps and prismatic layer) of shells are all the sa...In this article we explored the crystal structure of a few pearls and shellfish's shell of fresh water and sea water, and found that pearls and nacreous layer (perhaps and prismatic layer) of shells are all the same: CaCO3, orthorhombic system, aragonite structure and the value of lattice spacings are almost identical. This shows that the pearls of fresh water and sea water are all the same in nature.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, same further understanding of the shakedown ...It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, same further understanding of the shakedown theorem for kinematic hardening materials has been made, and it is applied to analyze the shakedown of shell structures Though the residual stress of a real stale is related to plastic strain, the time-independent residual stress field as we will show in the theorem may be unrelated to the time-independent kinematically admissible plastic strain field For the engineering application, it will lie much more convenient to point this out clearly and definitely, otherwise it will be very difficult. Also, we have proposed a new method of proving this theorem.The above theorem is applied to the shakedown analysis of a cylindrical shell with hemispherical ends. According to the elastic solution, various possible residual sfcss and plastic strain Jlelds, the shakedown analysis of the structure can be reduced to a mathematical programming problem.The results of calculation show that the shakedown load oj strain hardening materials is about 30-40% higher than that of ideal plastic materials. So it is very important to consider the hardening of materials in the shakedown analysis,for it can greatly increase the structure design capacity, and meanwhile provide ascicntific basis to improve the design of shell structures.展开更多
基金supported by the National Key R&D Program of China(Grant Number 2020YFB1708300)China National Postdoctoral Program for Innovative Talents(Grant Number BX20220124)+1 种基金China Postdoctoral Science Foundation(Grant Number 2022M710055)the New Cornerstone Science Foundation through the XPLORER PRIZE,the Knowledge Innovation Program of Wuhan-Shuguang,the Young Top-Notch Talent Cultivation Program of Hubei Province and the Taihu Lake Innovation Fund for Future Technology(Grant Number HUST:2023-B-7).
文摘Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
基金Supported by Shanghai Leading Academic Discipline Project ,Project Number :T0601
文摘3D digital design for cranes’ structures based on hybrid software architecture of Client/Server and Browser/Server is introduced in this paper. Based on Pro/ENGINEER platform,3D parametric model family is built to allow generation of feasible configurations of cranes’ structures in Client/Server framework. Taking use of Visual C++,the second exploiting software kit provided by Pro/ENGINEER and ANSYS GUI/APDL modeling patterns,an integration method of 3D CAD and CAE is achieved,which includes regeneration of 3D parametric model,synchronous updating and analysis of FEA model. As in Browser/Server framework,the 3D CAD models of parts,components and the whole structure could also be displayed in the customer’s browser in VRML format.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金National Natural Science Foundation of China Under Grand No.50778006Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality
文摘A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bearings is developed. Then, seismic isolation studies are performed for both double-layer and single-layer lattice shell structures under different seismic input and design parameters of the FPS. The influence of frictional coefficients and radius of the FPS on seismic performance are discussed. Based on the study, some suggestions for seismic isolation design of lattice shells with FPS bearings are given and conclusions are made which could be helpful in the application of FPS.
基金supported by the National Natural Science Foundation of China (Grant Nos. 21671085, 21473081, 21201088)the Natural Science Foundation of Jiangsu Province (BK20161160)the Qing Lan Project and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Non-spherical Cu@Cu S yolk–shell structures are successfully obtained using Cu_2 O cube templates in a process combining rapid surface sulfidation followed by disproportionation of the Cu_2 O core upon treatment with a hydrochloric acid solution. By employing the above method,Cu@Cu S yolk–shell structures with different morphologies,including octahedral, truncated octahedral, and cuboctahedral shapes, can be synthesized. The void space within the hollow structures provides a unique confined space, where the metallic copper present in the core of a shell can be protected from agglomeration and oxidation. Furthermore,the presence of metal copper in these hollow structurescontributes to improvement in the photocatalytic properties of these materials. The application of these Cu@Cu S structures indeed shows clearly improved photocatalytic performance.
基金World Premier International Research Center Initiative(WPI Initiative)on Materials Nanoarchitronics,MEXT,Japanthe Japan Society for the Promotion of Science (JSPS)for a support in the form of a fellowship tenable at the National Institute for Materials Science,Tsukuba,Japan.
文摘A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications.
基金National Natural Science Foundation of China Under Grant No. 50878010
文摘Reticulated shell structures (RSSs) are characterized as cyclically periodic structures. Mistuning of RSSs will induce structural mode localization. Mode localization has the following two features: some modal vectors of the structure change remarkably when the values of its physical parameters (mass or stiffness) have a slight change; and the vibration of some modes is mainly restricted in some local areas of the structure. In this paper, two quantitative assessment indexes are introduced that correspond to these two features. The first feature is studied through a numerical example of a RSS, and its induced causes are analyzed by using the perturbation theory. The analysis showed that internally, mode localization is closely related to structural frequencies and externally, slight changes of the physical parameters of the structure cause instability to the RSS. A scaled model experiment to examine mode localization was carried out on a Kiewit single-layer spherical RSS, and both features of mode localization are studied. Eight tests that measured the changes of the physical parameters were carried out in the experiment. Since many modes make their contribution in structural dynamic response, six strong vibration modes were tested at random in the experimental analysis. The change and localization of the six modes are analyzed for each test. The results show that slight changes to the physical parameters are likely to induce remarkable changes and localization of some modal vectors in the RSSs.
基金National Natural Science Foundation of China under Grant No. 60873203Foundation of Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education under Grant No. AISTC2009_03+1 种基金Hebei National Funds for Distinguished Young Scientists under Grant No. F2010000317National Science Foundation of Hebei Province under Grant No. F2010000319
文摘Since the guarantee of trustiness is considered inadequate in traditional software development methods,software developed using these methods lacks effective measures for ensuring its trustiness.Combining agent technique with the support of trusted computing provided by TPM,a trust-shell-based constitution model of trusted software(TSCMTS)is demonstrated,trust shell ensures the trustiness of software logically.The concept of Trust Engine is proposed,which extends the "chain of trust" of TCG into application,and cooperates with TPM to perform integrity measurement for software entity to ensure the static trustiness;Data Structure called trust view is defined to represent the characteristic of software behavior.For the purpose of improving the accuracy of trustiness constraints,a strategy for determining the weights of characteristic attributes based on information entropy is proposed.Simulation experiments illustrate that the trustiness of software developed by the TSCMTS is improved effectively without performance degradation.
文摘To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poineered and developed to provide an ininprocess active control of welding distortion. Satisfactory distortion free results were achieved in both welding of jet engine cases of heat-resistance alloys and rocket fuel tanks of aluminuim alloys, and there need no. reworking operations for post-weld distortion correction. Based on the 'static' method a newly developed method for dvnamic in-process control is also discussed in this paper. Both methods provide quanutiative in-process control of incompatible strains in weld zone and low stress no distortion welding results.
基金Supported by the Key Project of the Natural Science Foundation of Shandong Province(ZR2015QZ02)the Key Research&Development Program of Shandong Province(2016GSF117005)+1 种基金the introduction of scientific and technological innovation team of Ningxia Hui Autonomous Region(2016)Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2017-K22)
文摘Palm kernel shell(PKS)biochars with different levels of carbon conversion were initially prepared using a tube furnace,after which the reactivity of each sample was assessed with a thermogravimetric analyzer under a CO_2 atmosphere.The pore structure and carbon ordering of each biochar also examined,employing a surface area analyzer and a Raman spectroscopy.Thermogravimetric results showed that the gasification index R_sof the PKS biochar decreased from 0.0305 min^(-1) at carbon conversion(x)=20% to 0.0278 min^(-1)at x=40%.The expansion of micropores was the dominant process during the pore structure evolution,ad mesopores with sizes ranging from 6 to 20,48 to 50 nm were primarily generated during gasification under a CO_2/H_2O mixture.The proportion of amorphous carbon in the PKS biochar decreased significantly as x increased,suggesting that the proportion of ordered carbon was increased during the CO_2/H_2O mixed gasification.A significantly reduced total reaction time was observed when employing a CO_2/intermittent H_2O process along with an 83.46% reduction in the steam feed,compared with the amount required using a CO_2/H_2O atmosphere.
基金supported by the National Natural Science Foundation of China(No.31471704)the Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University(No.324-1122yb034)
文摘With bamboo shoot shell nanofibers(BSN) and konjac glucomannan(KGM) as precursor materials, the BSN/KGM aerogels were prepared in different proportions by sol-gel method. The surface morphology, microstructure, characteristic functional groups and thermal properties of BSN/KGM aerogels were characterized by scanning electron microscopy(SEM), infrared spectroscopy(IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The effect of BSN on the structure and properties of BSN/KGM aerogels was also studied. The results showed that the BSN/KGM aerogels possessed network porous structure with compact and homogeneous porosity, high specific surface area and low density. With the increase of BSN, the sheet structure of aerogels was converted into the 3D porous network structure, which contributes significantly higher thermal stability. In addition, the BSN/KGM aerogels showed excellent mechanical properties. The maximum relative compression rate was 62%, suggesting the addition of BSN can enhance the compression properties of the BSN/KGM aerogels.
基金Supported by The High-level Talents Program of Hebei Province (A20190-1128)Tangshan Science and Technology Planning Project (19150204E)。
文摘[Objectives] This study was conducted to investigate the feasibility of using modified peanut dietary fiber as a functional food ingredient. [Methods]Using peanut shells as a test material,the process parameters of soluble dietary fiber( SDF) modified by extrusion and expansion were studied,and the functional and structural characteristics of SDF before and after modification were discussed. [Results] The optimum conditions were as follows: screw speed 200 rpm,temperature 130 ℃ and moisture content 20 %,and the SDF extraction yield was 22. 3%. The modified SDF showed BCmax values of( 378. 5 ± 5. 3),( 278. 3 ± 3. 2)and( 167. 2 ± 2. 5) μmol/g and BCmin of( 30. 4 ± 1. 3),( 63. 4 ± 3. 7) and( 71. 3 ± 4. 2) μmol/L,for Pb,As and Cu,respectively,indicating that the adsorption to the three heavy metals was enhanced. The modified SDF had a porous network like honeycomb and swelled structure. [Conclusions]Therefore,it is feasible to modify SDF by extrusion and expansion.
基金This work was supported by National Natural Science Foundation of China under Grant 11672266.
文摘Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
基金supported by the National Science fund for Distinguished Young Scholars (No.50625204)the National Natural Science Foundation of China (Science Fund for Creative Research Groups)(No.50621201)+1 种基金the Major State Basic Research Development Program of China (No.2009CB623301)the National High-Tech Research and Development Program of China (No.2006AA03Z0428), and Samsung Electro-Mechanics Co., Ltd.
文摘Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.
基金Project supported by the Foundation of University's Doctorial Subjects of China (No.20010183013)985-Automotive Engineering of Jilin University.
文摘The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the objective function with the global stiffness constraint. In the layout optimization, the stiffeners should be placed at the locations with high strain energy/or stress. Conversely, elements of stiffeners with a small strain energy/or stress are considered to be used inefficiently and can be removed. Thus, to identify the element efficiency so that most inefficiently used elements of stiffeners can be removed, the element sensitivity of the strain energy of stiffeners is introduced, and a search criterion for locations of stiffeners is presented. The layout optimization approach is given for determining which elements of the stiffeners need to be kept or removed. In each iterative design, a high efficiency reanalysis approach is used to reduce the computational effort. The present approach is implemented for the layout optimization of stiffeners for a bunker loaded by the hydrostatic pressure. The numerical results show that the present approach is effective for dealing with layout optimization of stiffeners for plate-shell structures.
基金the National Natural Science Foundation of China (Grant No. 50608022)the Foundation of National Science and Technology(GrantNo.2006BAJ03B04)
文摘Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.
基金The project supported by National Natural Science Foundation of China(NSFC)
文摘In this article we explored the crystal structure of a few pearls and shellfish's shell of fresh water and sea water, and found that pearls and nacreous layer (perhaps and prismatic layer) of shells are all the same: CaCO3, orthorhombic system, aragonite structure and the value of lattice spacings are almost identical. This shows that the pearls of fresh water and sea water are all the same in nature.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, same further understanding of the shakedown theorem for kinematic hardening materials has been made, and it is applied to analyze the shakedown of shell structures Though the residual stress of a real stale is related to plastic strain, the time-independent residual stress field as we will show in the theorem may be unrelated to the time-independent kinematically admissible plastic strain field For the engineering application, it will lie much more convenient to point this out clearly and definitely, otherwise it will be very difficult. Also, we have proposed a new method of proving this theorem.The above theorem is applied to the shakedown analysis of a cylindrical shell with hemispherical ends. According to the elastic solution, various possible residual sfcss and plastic strain Jlelds, the shakedown analysis of the structure can be reduced to a mathematical programming problem.The results of calculation show that the shakedown load oj strain hardening materials is about 30-40% higher than that of ideal plastic materials. So it is very important to consider the hardening of materials in the shakedown analysis,for it can greatly increase the structure design capacity, and meanwhile provide ascicntific basis to improve the design of shell structures.