Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and sta...Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and stability in swarm forming processes,resulting in fragmentation and void phenomena. Inspired by the shepherding behaviors observed in nature, we propose an integrated negotiation-control scheme for distributed swarm control of massive robots. The core idea of this scheme is that the robots at the boundary of the group herd the internal robots to form an equilibrium swarm. For this purpose, we introduce a concept of virtual group center towards which boundary robots herd internal robots. Then, a distributed negotiation mechanism is designed to allow each robot to negotiate the virtual group center only through local interactions with its neighbors. After that, we propose a shepherding-inspired swarm control law to drive a group of robots to form an integrated, uniform, and stable configuration from any initial states. Both numerical and flight simulations are presented to verify the effectiveness of our proposed swarm control scheme.展开更多
基金supported by the National Key R&D Program of China (Grant No. 2022YFB3305600)the National Natural Science Foundation of China (Grant Nos. 62103015 and 62141604)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2023M740185)the Postdoctoral Fellows of Beihang “Zhuoyue” Program。
文摘Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and stability in swarm forming processes,resulting in fragmentation and void phenomena. Inspired by the shepherding behaviors observed in nature, we propose an integrated negotiation-control scheme for distributed swarm control of massive robots. The core idea of this scheme is that the robots at the boundary of the group herd the internal robots to form an equilibrium swarm. For this purpose, we introduce a concept of virtual group center towards which boundary robots herd internal robots. Then, a distributed negotiation mechanism is designed to allow each robot to negotiate the virtual group center only through local interactions with its neighbors. After that, we propose a shepherding-inspired swarm control law to drive a group of robots to form an integrated, uniform, and stable configuration from any initial states. Both numerical and flight simulations are presented to verify the effectiveness of our proposed swarm control scheme.