期刊文献+
共找到86,812篇文章
< 1 2 250 >
每页显示 20 50 100
Case Study on Synchronous Construction Technology for Secondary Lining of Large-diameter Single track Shiel Shield-bored ored Tunnel
1
作者 WANG Zhenfei ZHAI Jinying(Translated) 《Chinese Railways》 2023年第2期29-34,共6页
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the... The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future. 展开更多
关键词 large-diameter shield-bored tunnel synchronous construction of secondary lining super-long invert lining construction jumbo California switch "arch+side wall"lining jumbo
下载PDF
Magnetic Switching Dynamics and Tunnel Magnetoresistance Effect Based on Spin-Splitting Noncollinear Antiferromagnet Mn_(3)Pt
2
作者 朱蒙 董建艇 +4 位作者 李新录 郑凡星 周晔 吴琨 张佳 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期132-138,共7页
In comparison to ferromagnets,antiferromagnets are believed to have superior advantages for applications in next-generation magnetic storage devices,including fast spin dynamics,vanishing stray fields and robust again... In comparison to ferromagnets,antiferromagnets are believed to have superior advantages for applications in next-generation magnetic storage devices,including fast spin dynamics,vanishing stray fields and robust against external magnetic field,etc.However,unlike ferromagnetic orders,which could be detected through tunneling magnetoresistance effect in magnetic tunnel junctions,the antiferromagnetic order(i.e.,Néel vector)cannot be effectively detected by the similar mechanism due to the spin degeneracy of conventional antiferromagnets.Recently discovered spin-splitting noncollinear antiferromagnets,such as Mn_(3)Pt with momentum-dependent spin polarization due to their special magnetic space group,make it possible to achieve remarkable tunneling magnetoresistance effects in noncollinear antiferromagnetic tunnel junctions.Through first-principles calculations,we demonstrate that the tunneling magnetoresistance ratio can reach more than 800% in Mn_(3)Pt/perovskite oxides/Mn_(3)Pt antiferromagnetic tunnel junctions.We also reveal the switching dynamics of Mn_(3)Pt thin film under magnetic fields using atomistic spin dynamic simulation.Our study provides a reliable method for detecting Néel vector of noncollinear antiferromagnets through the tunnel magnetoresistance effect and may pave its way for potential applications in antiferromagnetic memory devices. 展开更多
关键词 tunnelING MAGNETORESISTANCE MOMENTUM
下载PDF
Mechanism of high-preload support based on the NPR anchor cable in layered soft rock tunnels
3
作者 SUI Qiru HE Manchao +3 位作者 SHI Mengfan TAO Zhigang ZHAO Feifei ZHANG Xiaoyu 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1403-1418,共16页
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d... The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data. 展开更多
关键词 tunnel engineering Soft rock High-preload support NPR anchor cables
下载PDF
A Simplified Method for the Stress Analysis of Underground Transfer Structures Crossing Multiple Subway Tunnels
4
作者 Shen Yan Dajiang Geng +2 位作者 Ning Dai Mingjian Long Zhicheng Bai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2893-2915,共23页
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str... According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment. 展开更多
关键词 Crossing tunnels transfer structure force mechanism simplify analysis layered soil mass
下载PDF
Dynamic Response of Foundations during Startup of High-Frequency Tunnel Equipment
5
作者 Dawei Ruan Mingwei Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期821-844,共24页
The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ... The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel. 展开更多
关键词 tunnel equipment high-frequency units startup conditions transient dynamics dynamic response foundation design
下载PDF
Treatment of Synovial Cysts in Relation to the Tibial Tunnel of Anterior Cruciate Ligament Grafts by Filling the Tunnel with Acrylic Cement
6
作者 Saint Luc Mungina Sedou Charlène Tshitala Mbombo +6 位作者 Yannick Toko Kiama Kevin Ndangi Ezechiel Nkodia Dieudonné Mwangala Rossyl Kivudi Dominique Saragaglia Luc Mokassa Bakumobatane 《Surgical Science》 2024年第4期289-298,共10页
Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, an... Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts. 展开更多
关键词 Arthro-Synovial Cyst Tibial tunnel ACL Graft FILLING Acrylic Cement
下载PDF
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
7
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Electrical properties and structural optimization of GaN/InGaN/GaN tunnel junctions grown by molecular beam epitaxy
8
作者 Jun Fang Fan Zhang +4 位作者 Wenxian Yang Aiqin Tian Jianping Liu Shulong Lu Hui Yang 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期48-54,共7页
The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases an... The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices. 展开更多
关键词 GaN/InGaN/GaN tunnel junctions polarization-engineering molecular beam epitaxy
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel
9
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Carpel Tunnel Syndrome: A Link with Vitamin D, Body Mass Index and Hyperlipidemia
10
作者 Faten Abdulhady Zakaria Thamer Abdullah Alsufayan Musaad Bedah Alsahly 《Neuroscience & Medicine》 2024年第1期55-65,共11页
Introduction: Carbai tunnel syndrome [CTS] is compression of the median nerve at the wrist , this causes tingling in the hands, pain, numbness, tingling in the fingers particularly the thumb, index and middle fingers,... Introduction: Carbai tunnel syndrome [CTS] is compression of the median nerve at the wrist , this causes tingling in the hands, pain, numbness, tingling in the fingers particularly the thumb, index and middle fingers, loss of sensation in the hands and fingers, also weakness in the hands. The aim of the present study was to study a possible association which could be found between electrophysiological data in CTS, BMI, hyperlipidemia, and vitamin D [Vit D] levels. Methods: We used a sample of 40 females of the same age group, who were divided into Group 1 as a control consists of 18 healthy females and Group II consisted of 22 age matched females with clinical and electrophysiological evidence of CTS. We measured atherogenic index [AI] as a marker of hyperlipidemia, body mass index [BMI], Vit D status and electrophysiological tests of CTS. Results: Subjects with CTS had deficient Vit D status, they had significantly high atherogenic index (AI), and significant high BMI all compared to control Group I. Median sensory conduction velocity was significantly correlated negatively with BMI and atherogenic index, and positively correlated significantly with Vit D status. But median sensory and motor action potential latency were significantly correlated positively with BMI and atherogenic index, and negatively correlated significantly with Vit D status The analysis revealed BMI, atherogenic index and Vit D status as predictors of median nerve sensory and motor action potential latency and sensory nerve conduction velocity in CTS. Conclusion: The results of this study suggest that obesity and hyperlipidemia are potent CTS risk factors and declared the direct association between Vit D status and CTS occurrence. Our study supports the notion of the compensatory neuroprotective role of Vit D which could have a direct impact on the nerves integrity as it has an anti-inflammatory property which acts in relieving nervous insults and stress. . 展开更多
关键词 Carpal tunnel Syndrome Vitamin D Body Mass Index
下载PDF
Assessment of the Influence of Tunnel Settlement on Operational Performance of Subway Vehicles
11
作者 Gang Niu Guangwei Zhang +2 位作者 Zhaoyang Jin Wei Zhang Xiang Liu 《Structural Durability & Health Monitoring》 EI 2024年第1期55-71,共17页
In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate ... In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems. 展开更多
关键词 SETTLEMENT running performance subway tunnel dynamic analysis track irregularity THRESHOLD
下载PDF
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum
12
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 Shield tunnelling Sandy cobble stratum Subsurface settlement Volumetric deformation mode Stochastic medium theory
下载PDF
Numerical analysis of moving train induced vibrations on tunnel,surrounding ground and structure
13
作者 Swati Srivastav Sowmiya Chawla Swapnil Mishra 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期179-192,共14页
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ... This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures. 展开更多
关键词 moving train load tunnelS vibration effect finite element method(FEM) wave propagation
下载PDF
Impact of surface-reflected seismic waves on the seismic isolation performance of circular tunnel isolation layers
14
作者 LU Jiahui LUO Junjie +3 位作者 HUANG Xiangyun HONG Junliang HE YanXin ZHOU Fulin 《Journal of Mountain Science》 SCIE CSCD 2024年第3期901-917,共17页
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored... Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers. 展开更多
关键词 Circular tunnel seismic isolation Surface reflection Response of liners Wave-function expansion method
下载PDF
Subsequent bilateral acute carpal tunnel syndrome due to tophaceous infiltration:A case report
15
作者 Soon-Chin Yeoh Wen-Tien Wu +2 位作者 Jui-Tien Shih Wen-Chin Su Kuang-Ting Yeh 《World Journal of Clinical Cases》 SCIE 2024年第2期418-424,共7页
BACKGROUND Acute carpal tunnel syndrome(ACTS)is commonly caused by repetitive strain,trauma,or inflammatory conditions.However,ACTS due to tophaceous gout is a clinical event that remains poorly understood and underre... BACKGROUND Acute carpal tunnel syndrome(ACTS)is commonly caused by repetitive strain,trauma,or inflammatory conditions.However,ACTS due to tophaceous gout is a clinical event that remains poorly understood and underreported.This rare manifestation necessitates prompt diagnosis and intervention to prevent irreversible complications.CASE SUMMARY A 51-year-old man who had poorly controlled hyperuricemia presented with ACTS secondary to tophaceous gout.Because of rapid symptom progression symptoms and severe median nerve compression within 3 mo,the patient underwent emergency decompression surgery for both wrists at different time points.Postoperatively,he exhibited complete recovery of sensory and motor functions,with no recurrence at long-term follow-up.Favorable outcomes were achieved through immediate decompression surgery,anti-inflammatory medications,postoperative active and passive range-of-motion exercises,and intermittent wrist splinting.Prompt diagnosis and surgical intervention,when necessary,are crucial for preventing long-term complications and obtaining favorable outcomes in patients with ACTS.An optimal gout management strategy involving pharmacologic therapy and lifestyle modifications may help minimize ACTS recurrence and improve clinical outcomes.CONCLUSION Prompt surgical intervention and optimal gout management are crucial for preventing irreversible nerve damage and ACTS recurrence. 展开更多
关键词 Acute carpal tunnel syndrome GOUT Surgical decompression Range-of-motion exercises Case report
下载PDF
Numerical investigation of geostress influence on the grouting reinforcement effectiveness of tunnel surrounding rock mass in fault fracture zones
16
作者 Xiangyu Xu Zhijun Wu +3 位作者 Lei Weng Zhaofei Chu Quansheng Liu Yuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期81-101,共21页
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I... Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed. 展开更多
关键词 Numerical manifold method(NMM) Grouting reinforcement Geostress condition Fault fracture zone tunnel excavation
下载PDF
Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model
17
作者 Gang Niu Zhaoyang Jin +1 位作者 Wei Zhang Yiqun Huang 《Structural Durability & Health Monitoring》 EI 2024年第2期161-179,共19页
Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economi... Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project. 展开更多
关键词 tunnel segment FRP SFRC cohesive zone model constitutive model fracture process
下载PDF
Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation
18
作者 Dingping Chen Zhiheng Zhu +1 位作者 Jinyang Fu Jilin He 《Computers, Materials & Continua》 SCIE EI 2024年第4期1679-1703,共25页
The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the su... The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels. 展开更多
关键词 Road tunnel crack inspection crack area sensing multiscale semantic segmentation CA-YOLO V7 DeepLab V3+
下载PDF
Application of transient Rayleigh wave in detection of tunnel lining void area
19
作者 ZHENG Chao WANG Yanlong +1 位作者 ZHANG Baohui DU Lizhi 《Global Geology》 2024年第1期56-62,共7页
Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lin... Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lining physical model experiment,the layout defects of the double-layer reinforcement lining area were detected and the Rayleigh wave velocity profile and dispersion curve were analyzed after data process-ing,which finally verified the feasibility and accuracy of Rayleigh wave method in detecting the tunnel lining void area.The results show that the method is not affected by the reinforcement inside the lining,the shallow detection is less disturbed and the accuracy is higher,and the data will fluctuate slightly with the deepening of the detection depth.At the same time,this method responds quite accurately to the thickness of the concrete,allowing for the assessment of the tunnel lining’s lack of compactness.This method has high efficiency,good reliability,and simple data processing,and is suitable for nondestructive detection of internal defects of tun-nel lining structure. 展开更多
关键词 transient Rayleigh wave DETECTION tunnel lining quality detection dispersion curve Rayleigh wave velocity profile
下载PDF
Construction Technology of Pile Foundation for Subway Tunnel Crossing Bridge
20
作者 Ruiquan Liu 《Journal of World Architecture》 2024年第2期37-42,共6页
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe... Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference. 展开更多
关键词 Subway tunnel Bridge pile foundation Replacement construction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部