期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Tensile and Impact Properties of Shielded Metal Arc Welded AISI 409M Ferritic Stainless Steel Joints 被引量:4
1
作者 K. Shanmugam A.K. Lakshminarayanan V. Balasubramanian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期181-186,共6页
The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel ... The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals. 展开更多
关键词 Ferritic stainless steel shielded metal arc welding Tensile properties Impact toughness
下载PDF
Analysis Microstructure of Weld Metal for HO130+OJ63 High Strength Steel
2
作者 WANG Juan LI Ya-jiang SUN Jun-sheng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2002年第1期50-54,共5页
The microstructure in the weld metals for HQ130 + QJ63 high strength steels,which are welded by Ar-CO_2 gas shielded metal arc welding,was analyzed by means of microscope and scan electron microscope(SEM).The relative... The microstructure in the weld metals for HQ130 + QJ63 high strength steels,which are welded by Ar-CO_2 gas shielded metal arc welding,was analyzed by means of microscope and scan electron microscope(SEM).The relative content of different microstructure was evaluated with XQF-2000 micro-image analyzer.The effect of acicular ferrite content on the impact toughness was also studied.The test results indicated that the main microstructure in the weld metals of HQ130 + QJ63 high strength steels is acicular ferrite and a few pro-eutectic ferrite on the boundary of original austenite grain.Near the fusion zone there are columnar grains whose direction coefficient(X) is 3.22,but the microstructure in the center of the weld metal is isometric grain,whose direction coefficient X = 1.In order to avoid welding crack and improve welding technology the weld heat input should be strictly controlled in 10-16 kJ/cm.Thus,the main microstructure in the weld metals is fine acicular ferrite and the content of pro-eutectic ferrite is limited.The impact toughness in the weld metals of HQ130+ QJ63 steels can be ensured and can meet the requirements for application in engineering and machinery. 展开更多
关键词 high strength steel gas shielded metal arc welding weld metal micro-image
下载PDF
Effect of Tempering Temperature on Strength and Toughness of Novel Carbide-Free Bainite/Martensite Duplex Phase Steel 被引量:7
3
作者 LIU Dong-yu BAI Bing-zhe +3 位作者 FANG Hong-sheng YANG Zhi-gang ZHANG Chi YAN Wen-yan 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2002年第1期46-49,共4页
The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The rela... The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The relative content of different microstructure was evaluated with XQF 2000 micro image analyzer. The effect of acicular ferrite content on the impact toughness was also studied. The test results indicated that the main microstructure in the weld metals of HQ130+QJ63 high strength steels is acicular ferrite and a few pro eutectic ferrite on the boundary of original austenite grain. Near the fusion zone there are columnar grains whose direction coefficient (X) is 3 22, but the microstructure in the center of the weld metal is isometric grain, whose direction coefficient X=1 In order to avoid welding crack and improve welding technology the weld heat input should be strictly controlled in 10-16 kJ/cm. Thus, the main microstructure in the weld metals is fine acicular ferrite and the content of pro eutectic ferrite is limited. The impact toughness in the weld metals of HQ130+QJ63 steels can be ensured and can meet the requirements for application in engineering and machinery. 展开更多
关键词 high strength steel gas shielded metal arc welding weld metal micro image
下载PDF
Effect of Welding Processes on Tensile and Impact Properties,Hardness and Microstructure of AISI 409M Ferritic Stainless Joints Fabricated by Duplex Stainless Steel Filler Metal 被引量:2
4
作者 A K Lakshminarayanan K Shanmugam V Balasubramanian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2009年第5期66-72,共7页
The effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is ... The effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is studied. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the welded joints have been evaluated and the results are compared. From this investigatio.n, it is found that gas tungsten arc welded joints of ferritic stainless steel have superior tensile and impact properties compared with shielded metal arc and gas metal arc welded joints and this is mainly due to the presence of finer grains in fusion zone and heat affected zone. 展开更多
关键词 ferritic stainless steel shielded metal arc welding gas metal arc welding gas tungsten arc welding TENSILE impact property
原文传递
Effect of Notch Location on Fatigue Life Prediction of Strength Mismatched HSLA Steel Weldments 被引量:1
5
作者 S.Ravi V.Balasubramanian S.Nemat Nasser 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期129-135,共7页
Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the avail... Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location. 展开更多
关键词 shielded metal arc welding High strength low alloy steel Mismatch ratio Notch location Fatigue crack growth Fatigue life
下载PDF
Effect of Welding Processes and Consumables on Tensile and Impact Properties of High Strength Quenched and Tempered Steel Joints 被引量:17
6
作者 G Magudeeswaran V Balasubramanian +1 位作者 G Madhusudhan Reddy T S Balasubramanian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2008年第6期87-94,共8页
Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy beca... Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts. 展开更多
关键词 shielded metal arc welding process flux cored arc welding process austenitie stainless steel low hydro gen ferritic steel transverse tensile property impact toughness
原文传递
Weldability of Ferritic Ductile Cast Iron Using Full Factorial Design of Experiment 被引量:5
7
作者 Mohsen Askari-Paykani Mehrdad Shayan Morteza Shamanian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第2期252-263,共12页
The weldability of a ferritic ductile cast iron was investigated as a function of different consumables and welding conditions. A 23 full factorial experimental design was used to analyze the effect of factors and the... The weldability of a ferritic ductile cast iron was investigated as a function of different consumables and welding conditions. A 23 full factorial experimental design was used to analyze the effect of factors and their interac- tions on ultimate tensile strength of weldments. The shielded metal arc welding (SMAW) process was used with two types of consumables (E7018 and ENi-CI) under eight different conditions using as-cast samples. The microstructur- al evolution and fracture mechanisms were investigated by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness, tensile and impact tests were also performed to determine the weld quality. Based on experiment design, preheat, consumable, cooling condition, preheat cooling and preheat-consumable inter- actions were significant factors. Preheat is the most effective factor and in the case of E7018, preheat and cooling conditions were the most sensible factors. It was found that buttering was the most appropriate welding method for ferritic ductile cast iron. 展开更多
关键词 ferritic ductile cast iron shielded metal arc welding WELDABILITY full factorial experimental design
原文传递
Evaluation of Zero and Sub-zero Temperature Tensile and Impact Properties of Quenched and Tempered Steel Weldments
8
作者 M.BALAKRISHNAN V.BALASUBRAMANIAN M.A.MUTHU MANICKAM 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第11期1177-1187,共11页
Combat vehicles using armour grade quenched and tempered (Q&T) steel are needed to be operated under different climatic conditions. However, the properties meeting the room temperature test conditions may not neces... Combat vehicles using armour grade quenched and tempered (Q&T) steel are needed to be operated under different climatic conditions. However, the properties meeting the room temperature test conditions may not neces-sarily be required to meet the low temperature operating conditions. The influences of shielded metal arc welding (SMAW) process, flux cored arc welding (FCAW) processes and test temperatures below room temperature up to 60℃ on tensile and impact toughness properties of armour grade Q&T steel welds were reported. The tensile and impact properties of the joints showed incremental trend with respect to the decrement in test temperature up to -40℃ irrespective of the welding processes used. The increment in tensile and impact properties of SMAW and FCAW joints subjected to the low temperature environment is due to plastic strain-induced phase transformation of retained austenite into martensite phase. Among the two processes, SMAW process welded joint showed better tensile and impact properties than its FCAW counterpart joints. 展开更多
关键词 shielded metal arc welding flux cored arc welding low temperature property microstrncture: hardness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部