A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT ha...A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.展开更多
Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa l...Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.展开更多
文摘A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.
基金funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R235)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.