期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hot Data Identification with Multiple Bloom Filters: Block-Level Decision vs I/O Request-Level Decision
1
作者 Dongchul Park Weiping He H. C. Du 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第1期79-97,共19页
Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requi... Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requires equally considering recency and frequency. Moreover, previous studies make hot data decisions at the data block level. Such a fine-grained decision fits particularly well for flash-based storage because its random access achieves performance comparable with its sequential access. However, hard disk drives (HDDs) have a significant performance disparity between sequential and random access. Therefore, unlike flash-based storage, exploiting asymmetric HDD access performance requires making a coarse-grained decision. This paper proposes a novel hot data identification scheme adopting multiple bloom filters to efficiently characterize recency as well as frequency. Consequently, it not only consumes 50% less memory and up to 58% less computational overhead, but also lowers false identification rates up to 65% compared with a state-of-the-art scheme. Moreover, we apply the scheme to a next generation HDD technology, i.e., Shingled Magnetic Recording (SMR), to verify its effectiveness. For this, we design a new hot data identification based SMR drive with a coarse-grained decision. The experiments demonstrate the importance and benefits of accurate hot data identification, thereby improving the proposed SMR drive performance by up to 42%. 展开更多
关键词 hot data bloom filter shingled magnetic recording (SMR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部