Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and ...Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,展开更多
Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided ...Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].展开更多
Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing s...Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.展开更多
The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures...The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.展开更多
In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expresse...In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.展开更多
Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) kn...Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.展开更多
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology...Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future.展开更多
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While...Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.展开更多
Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s...Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.展开更多
Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key techno...Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.展开更多
Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially...Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.展开更多
Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology ba...Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology based on high energy sources has become a key factor influencing the future development of MAM.The calculation of phase diagrams(CALPHAD)is an essential method and tool for constructing multi-component phase diagrams by employing experimental phase diagrams and Gibbs free energy models of simple systems.By combining with the element mobility data and non-equilibrium phase transition model,it has been widely used in the analysis of traditional metal materials.The development of CALPHAD application technology for MAM is focused on the compositional design of printable materials,the reduction of metallurgical imperfections,and the control of microstructural attributes.This endeavor carries considerable theoretical and practical significance.This paper summarizes the important achievements of CALPHAD in additive manufacturing(AM)technology in recent years,including material design,process parameter optimization,microstructure evolution simulation,and properties prediction.Finally,the limitations of applying CALPHAD technology to MAM technology are discussed,along with prospective research directions.展开更多
At present,most total knee replacement(TKR)prostheses on the market are designed according to the sizes of Caucasians.However,extensive studies have indicated that human anatomies differ among different ethnicities.A ...At present,most total knee replacement(TKR)prostheses on the market are designed according to the sizes of Caucasians.However,extensive studies have indicated that human anatomies differ among different ethnicities.A number of reports have indicated that Chinese TKR patients do not match with available prostheses.In this study,computed tomography(CT)images of 52 knees of Chinese men and women were used for anthropometric measurements.Index and geometric measurements were definedand used for correlation analysis.Key parameters from the measurement results were identified.Detailed geometries of knees were measured as coordinates.A deformable three-dimensional(3D)knee modelbased on anatomical coordinates correlating with the identified key parameters was generated.A pros-thesis was then designed according to the analyzed results.Surface matching analysis,bone resectionanalysis,and cadaveric trials were conducted and compared with commercial products to validate theproposed design.The femoral component designed by this study resulted in the highest accuracy(rootmean square point-to-surface(RMS PS),(1.08±0.20)mm)and lowest amount of resected bone volume(27412mm^(3))in comparison with two commercial knee prostheses.This study suggests a new approachfor population-based patient-specific femoral prosthesis design With a single,easilty acquired dimen-sion-namely,epicondyle width(ECW)-as input,a patient-specific femoral prosthesis can be designed according to the analyzed measured data and manufactured by additive manufacturing(AM)methods.Meanwhile,the reconstructed femoral condylar surface was compared with the femoral condylar surfacein the original CT scanning data The average RMS PS distance of the reconstructed femoral condylar surface among all data was(1.10±0.18)mm,which is comparable to other statistical shape modeling methods using multiple radiographs as input data.There is a need to develop an anthropometric-based knee prosthesis for the Chinese population.Based on the anthropometry of the Chinese population,our new design fits Chinese patients better and reserves more bone volume compared with current commercial prostheses,which is an essential step toward AM for personalized knee prostheses.展开更多
A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy was designed using the cluster formula approach(cluster-plus-glue-atom model)and prepared by laser melting deposition(LMD).Its composition formula 12[Al-Ti_(12...A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy was designed using the cluster formula approach(cluster-plus-glue-atom model)and prepared by laser melting deposition(LMD).Its composition formula 12[Al-Ti_(12)](AlTi_(2))+5[Al_(0.8)Si_(0.2)-Ti_(12)Zr_(2)](V_(0.8)Mo_(0.2)Nb_(1)Ti)features an enhancedβ-Ti via co-alloying of Zr,V,Mo,Nb and Si.The experimental results show that the cluster formula ofαandβphases in the novel alloy are respectivelyα-[Al-Ti_(11.5)Zr_(0.5)](Al_(1)Ti_(2))andβ-[Al_(0.8)Si_(0.2)-Ti_(13.2)Zr_(0.8)](V_(1)Mo_(0.4)Nb_(1.6)),both containing Zr elements.The fitted composition via the α andβphase cluster formulas has little difference with the actual alloy composition,suggesting that the validity of cluster-plus-glue-atom model in the alloy composition design.After hot isostatic pressing(HIP),both the Ti-6Al-4V and the novel alloy by LMD are characterized by prior-βcolumnar grains,while the typical<100>texture disappears.Compared with Ti-6Al-4V,Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy exhibits a combination of higher strength(1,056 MPa)and higher ductility(14%)at room temperature and higher strength(580 MPa)at 550℃ after HIP,and can potentially serves as LMD materials.展开更多
Existing Metal Additive Manufacturing processes are fast approaching a matured stage in which a wide range of possibilities are available for the incorporation of the rapid fabrication technology to current industrial...Existing Metal Additive Manufacturing processes are fast approaching a matured stage in which a wide range of possibilities are available for the incorporation of the rapid fabrication technology to current industrial practices. In terms of design conventions, the limitless geometrical freedom allows complex structures including cellular internal grids and lattices to be formed without additional tooling. Repair parts and leveraging components can also be produced on demand when required especially for military assets where large volume of inventory is constantly maintained to ensure operational readiness. In this exemplary work, a feasibility study on using stainless steel material with integrated cellular design to manufacture a guide bracket found on a military vehicle via Selective Laser Melting process was conducted. The results showed appreciably better mechanical performance in using a stainless steel honeycomb as compared to the aluminum alloy used for the original component together with a faster production route through SLM.展开更多
Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for com...Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for companies to achieve their objectives. Efforts to mass customisation should be made on two aspects: (1) To modularize products and make them as less differences as possible; (2) To design manufacturing resources and make them provide as many processes variations as possible. This paper reports our recent work on aspect (2), i.e. how to design a reconfignrable manufacturing system (RMS) so that it can be competent to accomplish various processes optimally; Reconfignrable robot system (RRS) is taken as an example. RMS design involves architecture design and configuration design, and configuration design is further divided in design analysis and design synthesis. Axiomatic design theory (ADT) is applied to architecture design, the features and issues of RRS configuration design are discussed, automatic modelling method is developed for design analysis, and concurrent design methodology is presented for design synthesis.展开更多
Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologie...Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology, big data analytics, Internet of things, robotics, cloud computing, and nanotechnology.展开更多
In the last decade, parametric and generative design techniques become quite popular for form-finding strategies or for pushing automation in design processes. Nevertheless, these techniques could be applied in engine...In the last decade, parametric and generative design techniques become quite popular for form-finding strategies or for pushing automation in design processes. Nevertheless, these techniques could be applied in engineering processes as well in order to improve the effectiveness and the efficiency of manufacturing processes in BI (building industry). Focusing on the case study of GLT (glued-laminated timber), this paper shows the procedure of programming a parametric algorithm adopted by authors that pursues two specific design intents: reducing the usage of unneeded high-quality raw material and improving the efficiency of production processes by producing DF (digital fabrication) contents for standard production systems of GLT. According to different European and international standards, thanks to FEM (finite element model) simulations and curvature analysis, the algorithm allows saving at least 33% of high-quality raw material and, according to early first surveys on a standard production system, 30% of operation time among product engineering-processes.展开更多
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
文摘Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,
文摘Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].
基金supported by National Natural Science Foundation of China(Grant No. 60975058)
文摘Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.
文摘The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.
基金the National Key Research and Development Program of China(No.2016YFB1100103)the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(No.2020JJ25CY004)。
文摘In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.
基金Supported by National Science and Technology Council(CONACYT)of Mexico(Grant No.CB-2010-01-154430)PROMEP Program of the Public Education Secretariat(SEP)of MexicoFund for Research Support(FAI)of UASLP
文摘Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.
基金sponsored by the National Key Research and Development Program of China[Grant Nos.2020YFC0826804 and 2022YFC3320504]the National Natural Science Foundation of China[Grant No.11772059]。
文摘Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)project supported by the Space Utilization System of China Manned Space Engineering(KJZ-YY-WCL03)+6 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902210109)National Key Research and Development Program of China(2018YFB0905600 and 2017YFB0310400)National Natural Science Foundation of China(51472188 and 51521001)Natural Research Funds of Hubei Province(2016CFB583)Natural Research Funds of Shenzhen,Fundamental Research Funds for the Central Universities China,State Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology)the Science and Technology Project of the Global Energy Interconnection Research Institute Co.,Ltd.(SGGR0000WLJS1801080)the 111 Project(B13035)。
文摘Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.
基金supported by the National Natural Science Foundation of China(Nos.82272504 and 82072456)the National Key R&D Program of China(No.2018YFB1105100)+4 种基金the Department of Science and Technology of Jilin Province,China(Nos.20200404202YY,20200403086SF,20210101321JC,20210204104YY,20200201453JC,20220204119YY,202201ZYTS131,202201ZYTS129,20220401084YY,202201ZYTS505,and YDZJ202301ZYTS076)the Department of Finance of Jilin Province,China(No.2020SCZT037)the Jilin Provincial Development and Reform Commission,China(Nos.2018C010 and 2022C043-5)the Interdisciplinary Integration and Cultivation Project of Jilin University(No.JLUXKJC2020307)the Central University Basic Scientific Research Fund(No.2023-JCXK-04).
文摘Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.
基金Funded by the Natural Science Foundation of Hubei province(2005ABB023)Wuhan city dawn plan(20055003059)
文摘Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.
文摘Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.
基金supported by the National Key Research and Development Program of China(No.2021YFB3702500)。
文摘Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology based on high energy sources has become a key factor influencing the future development of MAM.The calculation of phase diagrams(CALPHAD)is an essential method and tool for constructing multi-component phase diagrams by employing experimental phase diagrams and Gibbs free energy models of simple systems.By combining with the element mobility data and non-equilibrium phase transition model,it has been widely used in the analysis of traditional metal materials.The development of CALPHAD application technology for MAM is focused on the compositional design of printable materials,the reduction of metallurgical imperfections,and the control of microstructural attributes.This endeavor carries considerable theoretical and practical significance.This paper summarizes the important achievements of CALPHAD in additive manufacturing(AM)technology in recent years,including material design,process parameter optimization,microstructure evolution simulation,and properties prediction.Finally,the limitations of applying CALPHAD technology to MAM technology are discussed,along with prospective research directions.
文摘At present,most total knee replacement(TKR)prostheses on the market are designed according to the sizes of Caucasians.However,extensive studies have indicated that human anatomies differ among different ethnicities.A number of reports have indicated that Chinese TKR patients do not match with available prostheses.In this study,computed tomography(CT)images of 52 knees of Chinese men and women were used for anthropometric measurements.Index and geometric measurements were definedand used for correlation analysis.Key parameters from the measurement results were identified.Detailed geometries of knees were measured as coordinates.A deformable three-dimensional(3D)knee modelbased on anatomical coordinates correlating with the identified key parameters was generated.A pros-thesis was then designed according to the analyzed results.Surface matching analysis,bone resectionanalysis,and cadaveric trials were conducted and compared with commercial products to validate theproposed design.The femoral component designed by this study resulted in the highest accuracy(rootmean square point-to-surface(RMS PS),(1.08±0.20)mm)and lowest amount of resected bone volume(27412mm^(3))in comparison with two commercial knee prostheses.This study suggests a new approachfor population-based patient-specific femoral prosthesis design With a single,easilty acquired dimen-sion-namely,epicondyle width(ECW)-as input,a patient-specific femoral prosthesis can be designed according to the analyzed measured data and manufactured by additive manufacturing(AM)methods.Meanwhile,the reconstructed femoral condylar surface was compared with the femoral condylar surfacein the original CT scanning data The average RMS PS distance of the reconstructed femoral condylar surface among all data was(1.10±0.18)mm,which is comparable to other statistical shape modeling methods using multiple radiographs as input data.There is a need to develop an anthropometric-based knee prosthesis for the Chinese population.Based on the anthropometry of the Chinese population,our new design fits Chinese patients better and reserves more bone volume compared with current commercial prostheses,which is an essential step toward AM for personalized knee prostheses.
基金supported by the Natural Science Foundation of Shenyang,China(Grant No.22315605).
文摘A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy was designed using the cluster formula approach(cluster-plus-glue-atom model)and prepared by laser melting deposition(LMD).Its composition formula 12[Al-Ti_(12)](AlTi_(2))+5[Al_(0.8)Si_(0.2)-Ti_(12)Zr_(2)](V_(0.8)Mo_(0.2)Nb_(1)Ti)features an enhancedβ-Ti via co-alloying of Zr,V,Mo,Nb and Si.The experimental results show that the cluster formula ofαandβphases in the novel alloy are respectivelyα-[Al-Ti_(11.5)Zr_(0.5)](Al_(1)Ti_(2))andβ-[Al_(0.8)Si_(0.2)-Ti_(13.2)Zr_(0.8)](V_(1)Mo_(0.4)Nb_(1.6)),both containing Zr elements.The fitted composition via the α andβphase cluster formulas has little difference with the actual alloy composition,suggesting that the validity of cluster-plus-glue-atom model in the alloy composition design.After hot isostatic pressing(HIP),both the Ti-6Al-4V and the novel alloy by LMD are characterized by prior-βcolumnar grains,while the typical<100>texture disappears.Compared with Ti-6Al-4V,Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy exhibits a combination of higher strength(1,056 MPa)and higher ductility(14%)at room temperature and higher strength(580 MPa)at 550℃ after HIP,and can potentially serves as LMD materials.
文摘Existing Metal Additive Manufacturing processes are fast approaching a matured stage in which a wide range of possibilities are available for the incorporation of the rapid fabrication technology to current industrial practices. In terms of design conventions, the limitless geometrical freedom allows complex structures including cellular internal grids and lattices to be formed without additional tooling. Repair parts and leveraging components can also be produced on demand when required especially for military assets where large volume of inventory is constantly maintained to ensure operational readiness. In this exemplary work, a feasibility study on using stainless steel material with integrated cellular design to manufacture a guide bracket found on a military vehicle via Selective Laser Melting process was conducted. The results showed appreciably better mechanical performance in using a stainless steel honeycomb as compared to the aluminum alloy used for the original component together with a faster production route through SLM.
文摘Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for companies to achieve their objectives. Efforts to mass customisation should be made on two aspects: (1) To modularize products and make them as less differences as possible; (2) To design manufacturing resources and make them provide as many processes variations as possible. This paper reports our recent work on aspect (2), i.e. how to design a reconfignrable manufacturing system (RMS) so that it can be competent to accomplish various processes optimally; Reconfignrable robot system (RRS) is taken as an example. RMS design involves architecture design and configuration design, and configuration design is further divided in design analysis and design synthesis. Axiomatic design theory (ADT) is applied to architecture design, the features and issues of RRS configuration design are discussed, automatic modelling method is developed for design analysis, and concurrent design methodology is presented for design synthesis.
文摘Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology, big data analytics, Internet of things, robotics, cloud computing, and nanotechnology.
文摘In the last decade, parametric and generative design techniques become quite popular for form-finding strategies or for pushing automation in design processes. Nevertheless, these techniques could be applied in engineering processes as well in order to improve the effectiveness and the efficiency of manufacturing processes in BI (building industry). Focusing on the case study of GLT (glued-laminated timber), this paper shows the procedure of programming a parametric algorithm adopted by authors that pursues two specific design intents: reducing the usage of unneeded high-quality raw material and improving the efficiency of production processes by producing DF (digital fabrication) contents for standard production systems of GLT. According to different European and international standards, thanks to FEM (finite element model) simulations and curvature analysis, the algorithm allows saving at least 33% of high-quality raw material and, according to early first surveys on a standard production system, 30% of operation time among product engineering-processes.