Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be ...Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.展开更多
The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their c...The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.展开更多
Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great ...Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.展开更多
基金financially supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)the Research Fund of State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University(Grant No.1104)
文摘Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.
文摘The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.
基金Supported by National Nature Science Foundation of China(Grant No:51275340)
文摘Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.