After the anti-collision facility construction of Wanzhou Yangtze River Highway Bridge, the conditions of navigation in bridge area are complex. In order to study the navigation conditions of the reach and layout opti...After the anti-collision facility construction of Wanzhou Yangtze River Highway Bridge, the conditions of navigation in bridge area are complex. In order to study the navigation conditions of the reach and layout optimization measures, ensuring the safety of the ship navigation test has been carried out on the ship model navigation in the bridge area. According to the requirements of the maximum safety limit of the ship model test, the paper puts forward the best route, the control method and the difficulty of navigation through the analysis of the test results, and finally gives the recommendations and suggestions.展开更多
The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of l...The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test.展开更多
This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new wa...This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.展开更多
It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative pr...It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative problems,which should be solved with care in model test,are presented from analysis of the similarity principle for the ship maneuverability in this paper.A corrective method of appropriate angle of rudder is provided based on the result of maneuverability model test for a tanker with large scale and the corresponding prediction of the maneuverability for full scale tanker is satisfactory in view of engineering practice.展开更多
Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-...Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.展开更多
文摘After the anti-collision facility construction of Wanzhou Yangtze River Highway Bridge, the conditions of navigation in bridge area are complex. In order to study the navigation conditions of the reach and layout optimization measures, ensuring the safety of the ship navigation test has been carried out on the ship model navigation in the bridge area. According to the requirements of the maximum safety limit of the ship model test, the paper puts forward the best route, the control method and the difficulty of navigation through the analysis of the test results, and finally gives the recommendations and suggestions.
文摘The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test.
文摘This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.
文摘It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative problems,which should be solved with care in model test,are presented from analysis of the similarity principle for the ship maneuverability in this paper.A corrective method of appropriate angle of rudder is provided based on the result of maneuverability model test for a tanker with large scale and the corresponding prediction of the maneuverability for full scale tanker is satisfactory in view of engineering practice.
基金Supported by the Directorate for Research and Community Service,University of Indonesia(RUUI Research Laboratory 2010),Jakarta,Indonesia
文摘Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.