The properties of 1(1/2)-spectrum are proved and the performances are an- alyzed. By means of the spectrum, the basic frequency component of the harmonic signals can be enhanced. Gaussian color noise and symetrical di...The properties of 1(1/2)-spectrum are proved and the performances are an- alyzed. By means of the spectrum, the basic frequency component of the harmonic signals can be enhanced. Gaussian color noise and symetrical distribution noise can be canceled. And non-quadratic phase coupling harmonic components in harmonic signal can be reduced. The ship radiated-noise is analyzed and its 7 features are extracted by the spectrum. By means of B-P artificial neural network, three type ships are classified according to extracted features. The classification results about the three type ships A, B and C are 90%, 91.3% and 85.7%. respectively.展开更多
A detection scheme for line spectrum of ship-radiated noise is proposed using Duffing oscillator. The chaotic trajectory of Duffing oscillator is analyzed and the state equation of the system is improved to detect wea...A detection scheme for line spectrum of ship-radiated noise is proposed using Duffing oscillator. The chaotic trajectory of Duffing oscillator is analyzed and the state equation of the system is improved to detect weak periodic signals in different frequencies. According to the simulation results, the phase transforms of Duffing oscillator are sensitive to periodic signals and immune to the random noise and the periodic interference signals which have larger angular frequency difference from the referential signal. By employing Lyapunov exponents in the field of detection as the criteria for chaos, the phase transforms of dynamic behaviors in quantity are successfully determined. Meanwhile, the threshold value in critical state has been evaluated more accurately. Based on the phase transforms of Duffing oscillator, a new method for detecting line spectrum of ship-radiated noise is given. Three types of ship-radiated noise signals are analyzed and the values of line spectrum are acquired successfully by this method. The experimental results show that this method has high sensitivity and high resolution.展开更多
文摘The properties of 1(1/2)-spectrum are proved and the performances are an- alyzed. By means of the spectrum, the basic frequency component of the harmonic signals can be enhanced. Gaussian color noise and symetrical distribution noise can be canceled. And non-quadratic phase coupling harmonic components in harmonic signal can be reduced. The ship radiated-noise is analyzed and its 7 features are extracted by the spectrum. By means of B-P artificial neural network, three type ships are classified according to extracted features. The classification results about the three type ships A, B and C are 90%, 91.3% and 85.7%. respectively.
基金National Natural Science Foundation of China (Grant No. 10474079)a major project of National Defense Science and Technology (Grant No. 41303080301)
文摘A detection scheme for line spectrum of ship-radiated noise is proposed using Duffing oscillator. The chaotic trajectory of Duffing oscillator is analyzed and the state equation of the system is improved to detect weak periodic signals in different frequencies. According to the simulation results, the phase transforms of Duffing oscillator are sensitive to periodic signals and immune to the random noise and the periodic interference signals which have larger angular frequency difference from the referential signal. By employing Lyapunov exponents in the field of detection as the criteria for chaos, the phase transforms of dynamic behaviors in quantity are successfully determined. Meanwhile, the threshold value in critical state has been evaluated more accurately. Based on the phase transforms of Duffing oscillator, a new method for detecting line spectrum of ship-radiated noise is given. Three types of ship-radiated noise signals are analyzed and the values of line spectrum are acquired successfully by this method. The experimental results show that this method has high sensitivity and high resolution.