This paper presents the research on the external mechanism of collision characters for a SPAR platform. The collision characters of SPAR platform have not attracted so much attention as that of ships in the past, beca...This paper presents the research on the external mechanism of collision characters for a SPAR platform. The collision characters of SPAR platform have not attracted so much attention as that of ships in the past, because short of this kind of collision accidents reported. But with the increasing number of SPAR platforms in the world, the possibility of such kind of accident also increases. Therefore, it is necessary to master the character of SPAR collision. Model test technique is employed to study the external mechanism. The collision scenario is a ship colliding with a SPAR platform moored in the site with 1500 meters water depth. The striking ship hits the SPAR platform on the hard tank near water surface in its longitudinal direction. The specifics of the SPAR's motions and the tension forces of the mooring lines are collected to summarize the hydrodynamic characters in the collision scenario. It is found that the maximal displacements and the maximal pitch angles of the SPAR platform, and the maximal tension forces of mooring lines are all linearly proportional to the initial velocity of the striking ship basically. Mooring lines play elastic roles in the collision course.展开更多
This paper studies intensively the problems of ship-platform collision. The ship and platform are treated as one structural system connected with spring elements and then motion equation of the collision system is est...This paper studies intensively the problems of ship-platform collision. The ship and platform are treated as one structural system connected with spring elements and then motion equation of the collision system is established. A nonlinear force-displacement relationship is derived for the simulation of local dent in a hit member and the yield surface of a dented tubular section is developed to consider the reduction of load carrying capacity of hit members. Large deformations, plasticity and strain-hardening of the beam-column element are taken into account by combining the elastic large displacement analysis theory with the plastic node method. The effect of the hydrodynamic forces acting on the platform, the rubber fender the property of the local dent and the buckling behavior of beam-column on collision are analyzed. The numerical simulation of the nonlinear dynamic response is carried out by Wilson theta method with updated Newton-Raphson iteration. And the numerical example of the dynamic response of a offshore platform in ship-platform collision is also present.展开更多
In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasti...In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasticity are accounted for and the limit yield surface expressed by generalized stress for a tubular section is derived. The modified stiffness matrix of space beam element is formulated by Plastic Node Method. The buckling behavior of beam columns can also be taken into account. It can trace the generation of plastic hinges during loading and finally the ultimate strength of offshore platform against collision is obtained.展开更多
In the leg-lowering process,the offshore jack-up platform is in a floating state,and the spudcan may collide with the seabed due to the platform motion in waves,thereby threatening the safety and stability of the plat...In the leg-lowering process,the offshore jack-up platform is in a floating state,and the spudcan may collide with the seabed due to the platform motion in waves,thereby threatening the safety and stability of the platform.This paper first analyzed the hydrodynamic response of a jack-up platform under different sea states.Then a finite-element model was established which considered the material and geometrical nonlinearity in the structure and the nonlinear interaction between soil and structure to investigate the collision response between the spudcan and seabed during lowering jack-up legs.The results show that the dynamic response of the platform decreases and gradually tends to be stable as the wave period increases.The motion response of the platform reach the largest value when the wave period is 8 s and the wave direction is 0°.The collision angle between the spudcan and seabed has a large influence on the collision response,while the velocity of leg-lowering has little influence on the collision response.The collision response is also significantly affected by soil conditions.For clay,the increase in undrained shear strength and Young’s modulus will increase the impact force.展开更多
In this paper,a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation.The hydrodynamic performance of a T-barge is investigated...In this paper,a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation.The hydrodynamic performance of a T-barge is investigated in the frequency domain,and the coupled motions are analyzed in the time domain.We then compare with those of the model test and determine that the response amplitude operator and the time series agree quite well.The barge exhibits favorable hydrodynamic behavior in the considered sea state,and the equipment loads are allowable.Themooring systemand sway fender forces are within the permissible range.Based on these results,we can verify that the actual installation of the offshore platform is feasible.We accurately simulated many important factors and effectively reduced the risk associated with the offshore installation,which is of great importance.As such,we demonstrate that the numerical simulation of the float-over installation for offshore platforms has practical engineering significance.展开更多
An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province.It is over 2000km long. The orogeni...An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province.It is over 2000km long. The orogenic belt was formed by collision between North China Platform and Siberia Platform during the Rodinian Super-Continent period. From sedimentary formation, magmatic activity and crustal tectonic deformation, it is suggested that along the tectonic belt the paleocontinental margin experienced four stages of tectonic evolution in middle Proterozoic, they are: continental margin rift, passive continental margin, active continental margin and collisional orogenic stages.展开更多
基金This work was supported by Science and Technology Commission of Shanghai Municipality (Grant No.05DJ14001)National High Technology Research and Development Program of China (863 Program, Grant No.2006AA09A107)
文摘This paper presents the research on the external mechanism of collision characters for a SPAR platform. The collision characters of SPAR platform have not attracted so much attention as that of ships in the past, because short of this kind of collision accidents reported. But with the increasing number of SPAR platforms in the world, the possibility of such kind of accident also increases. Therefore, it is necessary to master the character of SPAR collision. Model test technique is employed to study the external mechanism. The collision scenario is a ship colliding with a SPAR platform moored in the site with 1500 meters water depth. The striking ship hits the SPAR platform on the hard tank near water surface in its longitudinal direction. The specifics of the SPAR's motions and the tension forces of the mooring lines are collected to summarize the hydrodynamic characters in the collision scenario. It is found that the maximal displacements and the maximal pitch angles of the SPAR platform, and the maximal tension forces of mooring lines are all linearly proportional to the initial velocity of the striking ship basically. Mooring lines play elastic roles in the collision course.
文摘This paper studies intensively the problems of ship-platform collision. The ship and platform are treated as one structural system connected with spring elements and then motion equation of the collision system is established. A nonlinear force-displacement relationship is derived for the simulation of local dent in a hit member and the yield surface of a dented tubular section is developed to consider the reduction of load carrying capacity of hit members. Large deformations, plasticity and strain-hardening of the beam-column element are taken into account by combining the elastic large displacement analysis theory with the plastic node method. The effect of the hydrodynamic forces acting on the platform, the rubber fender the property of the local dent and the buckling behavior of beam-column on collision are analyzed. The numerical simulation of the nonlinear dynamic response is carried out by Wilson theta method with updated Newton-Raphson iteration. And the numerical example of the dynamic response of a offshore platform in ship-platform collision is also present.
文摘In this paper a numerical analysis method combining FEM incemental technique with limit analysis concept is proposed for the study of the static strength of offshore platform in collision. Large deformation and plasticity are accounted for and the limit yield surface expressed by generalized stress for a tubular section is derived. The modified stiffness matrix of space beam element is formulated by Plastic Node Method. The buckling behavior of beam columns can also be taken into account. It can trace the generation of plastic hinges during loading and finally the ultimate strength of offshore platform against collision is obtained.
基金financially supported by the National Natural Science Foundation of China(Grant No.51779171)the Tianjin Municipal Natural Science Foundation(Grant No.18JCYBJC22800)。
文摘In the leg-lowering process,the offshore jack-up platform is in a floating state,and the spudcan may collide with the seabed due to the platform motion in waves,thereby threatening the safety and stability of the platform.This paper first analyzed the hydrodynamic response of a jack-up platform under different sea states.Then a finite-element model was established which considered the material and geometrical nonlinearity in the structure and the nonlinear interaction between soil and structure to investigate the collision response between the spudcan and seabed during lowering jack-up legs.The results show that the dynamic response of the platform decreases and gradually tends to be stable as the wave period increases.The motion response of the platform reach the largest value when the wave period is 8 s and the wave direction is 0°.The collision angle between the spudcan and seabed has a large influence on the collision response,while the velocity of leg-lowering has little influence on the collision response.The collision response is also significantly affected by soil conditions.For clay,the increase in undrained shear strength and Young’s modulus will increase the impact force.
基金supported by Marine Engineering Equipment Scientific Research Project of Ministry of Industry and Information Technology of PRC and the Application of float-over installation simulation in Wangchang Project of CNOOC Technology ProjectThe Fundamental Research Funds for the Central Universities(HEUCF170102)
文摘In this paper,a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation.The hydrodynamic performance of a T-barge is investigated in the frequency domain,and the coupled motions are analyzed in the time domain.We then compare with those of the model test and determine that the response amplitude operator and the time series agree quite well.The barge exhibits favorable hydrodynamic behavior in the considered sea state,and the equipment loads are allowable.Themooring systemand sway fender forces are within the permissible range.Based on these results,we can verify that the actual installation of the offshore platform is feasible.We accurately simulated many important factors and effectively reduced the risk associated with the offshore installation,which is of great importance.As such,we demonstrate that the numerical simulation of the float-over installation for offshore platforms has practical engineering significance.
文摘An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province.It is over 2000km long. The orogenic belt was formed by collision between North China Platform and Siberia Platform during the Rodinian Super-Continent period. From sedimentary formation, magmatic activity and crustal tectonic deformation, it is suggested that along the tectonic belt the paleocontinental margin experienced four stages of tectonic evolution in middle Proterozoic, they are: continental margin rift, passive continental margin, active continental margin and collisional orogenic stages.