Observations and numeric modeling of internal wave generation and transformation in the shelf zone of sea show that the main part of tidal energy is transported to shores in form of internal gravitational waves. Long-...Observations and numeric modeling of internal wave generation and transformation in the shelf zone of sea show that the main part of tidal energy is transported to shores in form of internal gravitational waves. Long-term measurements of temperature and current velocity fluctuations at many levels in the near-bottom thermocline were carried out during the periods when stable seasonal thermocline was present. Analysis of the measurements permits us to understand mechanisms of internal wave destruction with turbulent motion generation and corresponding rebuilding of velocity and density mean fields in the stratified near-bottom layer. Spectral analysis of temperature fluctuations shows that in shoaling internal waves the low-frequency maxima disappear, maxima at higher frequencies appear, and the spectra slope in the high frequency range changes with depth. Taking into account the concurrent analysis of near-bottom pressure fluctuations and current velocity fluctuations from surface till bottom we come to the conclusion that breaking internal waves in a near-bottom thermocline generate not only small-scale three-dimensional turbulence, but also quasi-horizontal turbulence of larger scales, which considerably contributes into mixing and sediments, alluvium, and nutrients transport in the shelf zone of sea.展开更多
Shoaling is a common type of sedimentation in the evolution of carbonate platform,and commonly has poor continuity.This paper presents a newly discovered and rare type of shoaling,i.e.,mega-shoaling in nearly basin sc...Shoaling is a common type of sedimentation in the evolution of carbonate platform,and commonly has poor continuity.This paper presents a newly discovered and rare type of shoaling,i.e.,mega-shoaling in nearly basin scale,which is developed in the Middle Triassic Leikoupo Formation of the Sichuan Basin,southwest China.During the Leikoupo time,the studied Sichuan Basin experienced hot and dry climate conditions and developed a carbonate platform within a restricted epicontinental sea.In B sub-layer of the Lei-1-1 sub-member of the Leikoupo Formation a series of grainstones of shoal facies accumulated throughout almost the entire basin,thereby generating features associated with basin-scale mega-shoaling.By detailed core examination and microscopic observation of thin sections,it is shown that the lithology of this set of grainstones is dominated by doloarenite(calcarenite)followed by oolitic dolomite(limestone).In addition,it contains three types of sedimentary sequences characterized by upward-coarsening and upward-shallowing as the followings:restricted lagoon to platform interior beach;restricted lagoon to platform interior beach and to platform flat;and tidal flat to peritidal beach.Subsequently,a multicyclic stratigraphic division and correlation revealed that this set of grainstones can be well traced and compared horizontally,and is generally isochronous.In addition,a template for logging facies,established based on core calibrations and logging data,was employed to analyze the 235 wells in the basin.The results demonstrate the shoal grainstones to be 10–40 m thick with a15×104km2continuous distribution area.These findings indicate that the carbonate platform developed mega-shoals within a short period of time.The genesis of such a mega-shoaling was investigated by focusing on various shoaling conditions,such as paleo-tectonics,paleo-geomorphology,paleo-climate,sea-level changes,and palaeo-hydrodynamics.A specific combination of independent geological factors creates beneficial geomorphologic conditions for the mega-shoaling including a quiescent paleo-tectonic environment,relatively flat paleo-geomorphology and evaporites filling up and leveling off.In addition,a stably settling carbonate platform underwent sea-level fluctuations through swift transgressions and protracted regressions,which is not only conducive to continuous,multicyclic and superimposed vertical development of grain beaches but also beneficial for the horizontal migration,coalescence and superimposition of individual grain beaches.As a consequence,large-scale and continuously-distributed grain beach sedimentation emerges and mega-shoals develop.展开更多
Different environmental conditions may lead to diverse morphological,behavioral,and physiological adaptations of different populations of the same species.Lighting conditions,for example,vary vastly especially between...Different environmental conditions may lead to diverse morphological,behavioral,and physiological adaptations of different populations of the same species.Lighting conditions,for example,vary vastly especially between aquatic habitats,and have been shown to elicit adaptations.The availability of short-wave ultraviolet(UV)light is especially fluctuating,as UV wavelengths are attenuated strongly depending on water properties.The island of North Uist,Scotland,comprises 2 differential habitat types,tea-stained and clear-water lakes,varying considerably in UV transmission.In previous studies,wild-caught 3-spined stickleback Gasterosteus aculeatus populations(3 populations of each habitat type)were tested with respect to their shoaling and mate preferences for fish viewed under UV-present and UV-absent conditions.The results revealed a habitat-dependent preference of UV cues during shoal choice(tea-stained populations:preference for UV-absent condition in tea-stained water;clear-water populations:no preference in clear-water)but an overall preference for UV-present conditions during mate choice.To assess genetic influences on these behavioral patterns,similar experiments were conducted with lab-bred F1-gen-erations of the same stickleback populations that were raised in a common environment(i.e.standardized clear-water conditions).Offspring of sticklebacks from tea-stained lakes tended to prefer shoals viewed under UV-absent conditions(only in tea-stained water),while sticklebacks from clear-water lakes showed a significant preference for the shoal viewed under UV-present conditions in clear-water but not in tea-stained water.Mate-preference experiments demonstrated that females from the tea-stained lakes significantly preferred and females from the clear-water lakes preferred by trend the male viewed under UV-present conditions in the clear-water treatment.The results for both shoaling-and mate-preference tests were largely similar for wild-caught and lab-bred sticklebacks,thus hinting at a genetic basis for the preference patterns.展开更多
Shoaling behavior provides numerous fitness benefits for fish, including enhanced access to mates, increased success in foraging and protection from predators. We were interested in determining whether shoaling intens...Shoaling behavior provides numerous fitness benefits for fish, including enhanced access to mates, increased success in foraging and protection from predators. We were interested in determining whether shoaling intensity differed throughout the day. To do this we kept adult zebrafish Danio rerio in different lighting conditions for 10 days: "Normal" (12:12LD, lights on at 0800 hrs), "Reverse" (12:12LD, lights on at 2000 hrs), DD, or LL, and then observed the shoaling behavior at different times during the day. Our findings suggest that daily variations exist in shoaling behavior, with mean shoaling times for fish from the 'normal' group being the lowest at the mid-point of the dark phase in the fish's subjective day (00:00 hrs), then rising signifi- cantly throughout the day, reaching their highest intensity at 20:00 hrs (lights out). Fish from the "reverse" LD cycle (lights on at 20:00 hrs) showed differences in the mean shoaling times at different times of day, but did not show a gradual increase in shoaling throughout their subjective day. Fish from the DD and LL groups did not show significant differences in the mean shoaling values at different times of day, suggesting that the differences observed in LD fish may not represent circadian rhythms. Therefore, these results demonstrate the existence of daily variations in the shoaling behavior of fish and suggest that environmental cues in the form of light/dark cycles play an important role in regulating these variations [Current Zoology 58 (1): 129-137, 2012].展开更多
In this present study,a numerical method is proposed for solving the wave shoaling differential equations with turbulent and laminar boundary layers by using the meshless method based on the radial basis function.The ...In this present study,a numerical method is proposed for solving the wave shoaling differential equations with turbulent and laminar boundary layers by using the meshless method based on the radial basis function.The numerical solutions are compared with those of the finite difference method to see the accuracy,the validity and the applicability of the methodology developed in this paper.The meshless method by using the radial basis function can effectively improve the computational efficiency.The findings in this paper provide a significant support for the study of wave shoaling problems.展开更多
Shoaling intensity in zebrafish Danio rerio is believed to vary throughout subjective day and night hours. This experiment examines long term variations in shoaling behavior. Adult zebrafish Dan io rerio were maintain...Shoaling intensity in zebrafish Danio rerio is believed to vary throughout subjective day and night hours. This experiment examines long term variations in shoaling behavior. Adult zebrafish Dan io rerio were maintained under a 12:12 LD cycle (with dim red light serving as reduced visibility during subjective dark hours), and their shoaling behavior was monitored every hour for a three-day period of time. Our results show that zebrafish perform shoaling behavior throughout subjective day and under reduced visibility conditions, although mean shoaling times during the light phase were significantly higher than mean shoaling times during the dark phase. However, on the 3^rd day of the experiment, mean shoaling times during the subjective night had increased and mean shoaling times during the subjective day had decreased. This shift in intensity was not seen on the first two days of the study, and may represent the influence of experience on the behavior of the test fish. We believe this study shows that shoaling behavior changes with light/dark cycles and that fish shoal even during reduced visibility conditions.展开更多
Nitric oxide(NO)-the product of arginine metabolism catalyzed by nitric oxide synthases(NOS)-is a well-known neurotransmitter which plays an important role in metabolism and amino acid transportation in the nervous sy...Nitric oxide(NO)-the product of arginine metabolism catalyzed by nitric oxide synthases(NOS)-is a well-known neurotransmitter which plays an important role in metabolism and amino acid transportation in the nervous system.In particular,it can inhibit monoamine neurotransmitter transportation which affects animal behavior,especially social behavior.Shoaling-is a one kind of social behavior.It is a behavior that individual fish choose to join with their group within two factors;food and predation risk.Shoaling fish has quickly responded to predator and increased the change in feeding competition.In addition,shoaling also effect to stress response on stock density of aquaculture system.The effect of NO molecular signaling on the dopamine pathway was investigated using zebrafish(Danio rerio)as a model organism.Our aim was to understand the role of NOS and NO in shoaling behavior,which is typical of zebrafish.The concentration of NO in the zebrafish brain was modulated using a knockout for the neuronal NOS gene,and NO production was induced through treatment with L-arginine.The existence of NO in the zebrafish brain was confirmed by using a fluorescent probe.Dopamine concentration in the brain was measured by UPLC tandem mass spectrometer.We measured shoaling cohesion of all individual fish of D.rerio,using average distance between all pairs of fish(nearest neighbor distance)and analyzed tracking by Zebralab ViewPoint software.Collectively,our results suggest that a lower level of NO was associated with a higher level of dopamine,which in turn leads to the shoaling behavior.展开更多
Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small s...Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.展开更多
Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control...Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.展开更多
A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wav...A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.展开更多
Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm w...Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm waves, and can cause severe inundation and damage. In this study,we considered linear long waves in a two-dimensional(vertical-horizontal) domain propagating towards a shoreline over a shallowing shelf.New solutions to the linear shallow water equations were found, through the separation of variables, for two forms of transition shelf morphology: deep water and shallow coastal water horizontal shelves connected by linear and parabolic transition, respectively. Expressions for the transmission and reflection coefficients are presented for each case. The analytical solutions were used to test the results from a novel computational scheme, which was then applied to extending the existing results relating to the reflected and transmitted components of an incident wave. The solutions and computational package provide new tools for coastal managers to formulate improved defence and riskmitigation strategies.展开更多
The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assi...The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically.展开更多
This paper gives an overall discussion about water level change on slopes under wave action, including wave runup, wave rundown and wave up-down amplitude, and a suggested formula for their calculation.
This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. linear wave shoaling is used to determine changes in wave am...This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. linear wave shoaling is used to determine changes in wave amplitude and phase in response to variations of bathymetry. The wave reflection coefficient and incident amplitude are estimated from wave heights measured at three fixed wave gauges with unequal spacing. Sensitivity analysis demonstrates that the proposed method can predict the reflection and amplitude of waves over a sloping bed more accurately than the two-point method.展开更多
Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave...Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave reflection is an important process that affects the determination of the wave height. Many of the design formulas presented in the literature depend on empirical studies based on the structures tested. In this study, the hydrodynamic conditions in front of a vertical wall with an overhanging horizontal cantilever slab with a foreshore slope of 1/20 are determined experimentally under regular wave conditions to assess the applicability of the formulas of Goda(2000) for predicting the nearshore wave height and breaker index equation(Goda, 2010). The selection of wave measurements used to determine the design wave height, the reflection coefficients, and wave breaking is also analyzed, and the reflection equations are derived from the dataset covering different breaker types. Small-scale tests show that the incident wave height is a good representative of the design wave height and that the values predicted by Goda are in good agreement with actual measurements. However, the predicted Hmax values are overestimated. In addition, the inception of the wave breaking point is postponed because of the reflection and/or turbulence left over from preceding waves, which is an effect of the vertical wall. At higher water levels, the effect of the vertical wall on the inception point becomes more significant.展开更多
Semi-submersibles for offshore oil exploration and exploitation often suffer from severe wave impacts in extreme ocean environments.Owing to the complex wave interactions among structural components of semi-submersibl...Semi-submersibles for offshore oil exploration and exploitation often suffer from severe wave impacts in extreme ocean environments.Owing to the complex wave interactions among structural components of semi-submersibles,in-depth analyses on the characteristics of wave impact events are of significance for both industry and academia.An experimental study was carried out to investigate the local wave impact loads on a semi-submersible,with focus on understanding the wave impacts by identifying typical impact modes.Quantitative criteria are proposed to classify major wave impacts on the semi-submersible into six modes and two types.The results show that the classification is reasonable and provides valuable information for studying wave impacts on semi-submersibles.The incident wave characteristics at the fore column of the semi-submersible have important influence on the wave impact mode.The fore-column dominating wave impacts exert the most intense loads on the fore column and feature well-developed breaking waves or slightly breaking waves at the fore column.However,the aft-column dominating wave impacts exert the most intense loads on the aft column or the deck bottom and feature non-breaking waves at the fore column.Energy loss during the fore-column impact weakens the impact severity on the aft column in the fore-column dominating wave impacts.The shoaling effect of the submerged pontoon and different motion configurations of the platform result in higher occurrence rate of the aft-column dominating wave impacts.Different impact modes are also distinguished by different spatial distributions of wave impact loads.展开更多
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Bo...For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.展开更多
An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of ...An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.展开更多
文摘Observations and numeric modeling of internal wave generation and transformation in the shelf zone of sea show that the main part of tidal energy is transported to shores in form of internal gravitational waves. Long-term measurements of temperature and current velocity fluctuations at many levels in the near-bottom thermocline were carried out during the periods when stable seasonal thermocline was present. Analysis of the measurements permits us to understand mechanisms of internal wave destruction with turbulent motion generation and corresponding rebuilding of velocity and density mean fields in the stratified near-bottom layer. Spectral analysis of temperature fluctuations shows that in shoaling internal waves the low-frequency maxima disappear, maxima at higher frequencies appear, and the spectra slope in the high frequency range changes with depth. Taking into account the concurrent analysis of near-bottom pressure fluctuations and current velocity fluctuations from surface till bottom we come to the conclusion that breaking internal waves in a near-bottom thermocline generate not only small-scale three-dimensional turbulence, but also quasi-horizontal turbulence of larger scales, which considerably contributes into mixing and sediments, alluvium, and nutrients transport in the shelf zone of sea.
基金supported by National Basic Research Program of China(Grant No.2012CB214803)PetroChina Scientific Innovative Foundation(Grant No.2011D-5006-0105)Key Subject Construction Project of Sichuan Province,China(Grant No.SZD0414)
文摘Shoaling is a common type of sedimentation in the evolution of carbonate platform,and commonly has poor continuity.This paper presents a newly discovered and rare type of shoaling,i.e.,mega-shoaling in nearly basin scale,which is developed in the Middle Triassic Leikoupo Formation of the Sichuan Basin,southwest China.During the Leikoupo time,the studied Sichuan Basin experienced hot and dry climate conditions and developed a carbonate platform within a restricted epicontinental sea.In B sub-layer of the Lei-1-1 sub-member of the Leikoupo Formation a series of grainstones of shoal facies accumulated throughout almost the entire basin,thereby generating features associated with basin-scale mega-shoaling.By detailed core examination and microscopic observation of thin sections,it is shown that the lithology of this set of grainstones is dominated by doloarenite(calcarenite)followed by oolitic dolomite(limestone).In addition,it contains three types of sedimentary sequences characterized by upward-coarsening and upward-shallowing as the followings:restricted lagoon to platform interior beach;restricted lagoon to platform interior beach and to platform flat;and tidal flat to peritidal beach.Subsequently,a multicyclic stratigraphic division and correlation revealed that this set of grainstones can be well traced and compared horizontally,and is generally isochronous.In addition,a template for logging facies,established based on core calibrations and logging data,was employed to analyze the 235 wells in the basin.The results demonstrate the shoal grainstones to be 10–40 m thick with a15×104km2continuous distribution area.These findings indicate that the carbonate platform developed mega-shoals within a short period of time.The genesis of such a mega-shoaling was investigated by focusing on various shoaling conditions,such as paleo-tectonics,paleo-geomorphology,paleo-climate,sea-level changes,and palaeo-hydrodynamics.A specific combination of independent geological factors creates beneficial geomorphologic conditions for the mega-shoaling including a quiescent paleo-tectonic environment,relatively flat paleo-geomorphology and evaporites filling up and leveling off.In addition,a stably settling carbonate platform underwent sea-level fluctuations through swift transgressions and protracted regressions,which is not only conducive to continuous,multicyclic and superimposed vertical development of grain beaches but also beneficial for the horizontal migration,coalescence and superimposition of individual grain beaches.As a consequence,large-scale and continuously-distributed grain beach sedimentation emerges and mega-shoals develop.
基金This research was funded by the Deutsche Forschungsgemeinschaft(DFG)(BA 2885/1-5).
文摘Different environmental conditions may lead to diverse morphological,behavioral,and physiological adaptations of different populations of the same species.Lighting conditions,for example,vary vastly especially between aquatic habitats,and have been shown to elicit adaptations.The availability of short-wave ultraviolet(UV)light is especially fluctuating,as UV wavelengths are attenuated strongly depending on water properties.The island of North Uist,Scotland,comprises 2 differential habitat types,tea-stained and clear-water lakes,varying considerably in UV transmission.In previous studies,wild-caught 3-spined stickleback Gasterosteus aculeatus populations(3 populations of each habitat type)were tested with respect to their shoaling and mate preferences for fish viewed under UV-present and UV-absent conditions.The results revealed a habitat-dependent preference of UV cues during shoal choice(tea-stained populations:preference for UV-absent condition in tea-stained water;clear-water populations:no preference in clear-water)but an overall preference for UV-present conditions during mate choice.To assess genetic influences on these behavioral patterns,similar experiments were conducted with lab-bred F1-gen-erations of the same stickleback populations that were raised in a common environment(i.e.standardized clear-water conditions).Offspring of sticklebacks from tea-stained lakes tended to prefer shoals viewed under UV-absent conditions(only in tea-stained water),while sticklebacks from clear-water lakes showed a significant preference for the shoal viewed under UV-present conditions in clear-water but not in tea-stained water.Mate-preference experiments demonstrated that females from the tea-stained lakes significantly preferred and females from the clear-water lakes preferred by trend the male viewed under UV-present conditions in the clear-water treatment.The results for both shoaling-and mate-preference tests were largely similar for wild-caught and lab-bred sticklebacks,thus hinting at a genetic basis for the preference patterns.
文摘Shoaling behavior provides numerous fitness benefits for fish, including enhanced access to mates, increased success in foraging and protection from predators. We were interested in determining whether shoaling intensity differed throughout the day. To do this we kept adult zebrafish Danio rerio in different lighting conditions for 10 days: "Normal" (12:12LD, lights on at 0800 hrs), "Reverse" (12:12LD, lights on at 2000 hrs), DD, or LL, and then observed the shoaling behavior at different times during the day. Our findings suggest that daily variations exist in shoaling behavior, with mean shoaling times for fish from the 'normal' group being the lowest at the mid-point of the dark phase in the fish's subjective day (00:00 hrs), then rising signifi- cantly throughout the day, reaching their highest intensity at 20:00 hrs (lights out). Fish from the "reverse" LD cycle (lights on at 20:00 hrs) showed differences in the mean shoaling times at different times of day, but did not show a gradual increase in shoaling throughout their subjective day. Fish from the DD and LL groups did not show significant differences in the mean shoaling values at different times of day, suggesting that the differences observed in LD fish may not represent circadian rhythms. Therefore, these results demonstrate the existence of daily variations in the shoaling behavior of fish and suggest that environmental cues in the form of light/dark cycles play an important role in regulating these variations [Current Zoology 58 (1): 129-137, 2012].
基金the National Key Research and Development Program of China (Grant No.2016YFC0802204)the National Natural Science Foundation of China (Grant No.51679166)the National Natural Science Fund for Innovative Research Groups Science Foundation (Grant No.51321065).
文摘In this present study,a numerical method is proposed for solving the wave shoaling differential equations with turbulent and laminar boundary layers by using the meshless method based on the radial basis function.The numerical solutions are compared with those of the finite difference method to see the accuracy,the validity and the applicability of the methodology developed in this paper.The meshless method by using the radial basis function can effectively improve the computational efficiency.The findings in this paper provide a significant support for the study of wave shoaling problems.
文摘Shoaling intensity in zebrafish Danio rerio is believed to vary throughout subjective day and night hours. This experiment examines long term variations in shoaling behavior. Adult zebrafish Dan io rerio were maintained under a 12:12 LD cycle (with dim red light serving as reduced visibility during subjective dark hours), and their shoaling behavior was monitored every hour for a three-day period of time. Our results show that zebrafish perform shoaling behavior throughout subjective day and under reduced visibility conditions, although mean shoaling times during the light phase were significantly higher than mean shoaling times during the dark phase. However, on the 3^rd day of the experiment, mean shoaling times during the subjective night had increased and mean shoaling times during the subjective day had decreased. This shift in intensity was not seen on the first two days of the study, and may represent the influence of experience on the behavior of the test fish. We believe this study shows that shoaling behavior changes with light/dark cycles and that fish shoal even during reduced visibility conditions.
基金This work was supported funding by The China-ASEAN Maritime Cooperation Fund through the project“China-ASEAN Center for Joint Research and Promotion of Marine Aquaculture Technology”(grant number:DF)the Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of Shanghai Ocean University(grant number:31872546 and 31472262)。
文摘Nitric oxide(NO)-the product of arginine metabolism catalyzed by nitric oxide synthases(NOS)-is a well-known neurotransmitter which plays an important role in metabolism and amino acid transportation in the nervous system.In particular,it can inhibit monoamine neurotransmitter transportation which affects animal behavior,especially social behavior.Shoaling-is a one kind of social behavior.It is a behavior that individual fish choose to join with their group within two factors;food and predation risk.Shoaling fish has quickly responded to predator and increased the change in feeding competition.In addition,shoaling also effect to stress response on stock density of aquaculture system.The effect of NO molecular signaling on the dopamine pathway was investigated using zebrafish(Danio rerio)as a model organism.Our aim was to understand the role of NOS and NO in shoaling behavior,which is typical of zebrafish.The concentration of NO in the zebrafish brain was modulated using a knockout for the neuronal NOS gene,and NO production was induced through treatment with L-arginine.The existence of NO in the zebrafish brain was confirmed by using a fluorescent probe.Dopamine concentration in the brain was measured by UPLC tandem mass spectrometer.We measured shoaling cohesion of all individual fish of D.rerio,using average distance between all pairs of fish(nearest neighbor distance)and analyzed tracking by Zebralab ViewPoint software.Collectively,our results suggest that a lower level of NO was associated with a higher level of dopamine,which in turn leads to the shoaling behavior.
基金supported by the Joint Fund between NSFC and Shandong Province(No.U1906210)the China National Key Research and Development Program(No.2016YFC1402101).
文摘Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.
基金Supported by the National Natural Science Foundation of China(42172177)CNPC Scientific Research and Technological Development Project(2021DJ05)PetroChina-Southwest University of Petroleum Innovation Consortium Project(2020CX020000).
文摘Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.
基金This work was financially supported by the Science Foundation of National Education Committee of China (Grant No.40106008) and by LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences.
文摘A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.
基金supported by a Researcher Links Grant from the British Council,the Royal Academy of Engineering(Grant No.IAAP1/100086)the EFRaCC Project funded through the British Council's Global Innovation Initiative Program
文摘Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm waves, and can cause severe inundation and damage. In this study,we considered linear long waves in a two-dimensional(vertical-horizontal) domain propagating towards a shoreline over a shallowing shelf.New solutions to the linear shallow water equations were found, through the separation of variables, for two forms of transition shelf morphology: deep water and shallow coastal water horizontal shelves connected by linear and parabolic transition, respectively. Expressions for the transmission and reflection coefficients are presented for each case. The analytical solutions were used to test the results from a novel computational scheme, which was then applied to extending the existing results relating to the reflected and transmitted components of an incident wave. The solutions and computational package provide new tools for coastal managers to formulate improved defence and riskmitigation strategies.
基金supported by the National Natural Science Foundation of China(Grant Nos.51779022,51809053,and 51579034)the Innovation Team Project of Estuary and Coast Protection and Management(Grant No.Y220013)the Open Project Fund of State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP19015).
文摘The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically.
文摘This paper gives an overall discussion about water level change on slopes under wave action, including wave runup, wave rundown and wave up-down amplitude, and a suggested formula for their calculation.
文摘This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. linear wave shoaling is used to determine changes in wave amplitude and phase in response to variations of bathymetry. The wave reflection coefficient and incident amplitude are estimated from wave heights measured at three fixed wave gauges with unequal spacing. Sensitivity analysis demonstrates that the proposed method can predict the reflection and amplitude of waves over a sloping bed more accurately than the two-point method.
基金supported by the Special Research Fund by Ghent University (BOF)
文摘Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave reflection is an important process that affects the determination of the wave height. Many of the design formulas presented in the literature depend on empirical studies based on the structures tested. In this study, the hydrodynamic conditions in front of a vertical wall with an overhanging horizontal cantilever slab with a foreshore slope of 1/20 are determined experimentally under regular wave conditions to assess the applicability of the formulas of Goda(2000) for predicting the nearshore wave height and breaker index equation(Goda, 2010). The selection of wave measurements used to determine the design wave height, the reflection coefficients, and wave breaking is also analyzed, and the reflection equations are derived from the dataset covering different breaker types. Small-scale tests show that the incident wave height is a good representative of the design wave height and that the values predicted by Goda are in good agreement with actual measurements. However, the predicted Hmax values are overestimated. In addition, the inception of the wave breaking point is postponed because of the reflection and/or turbulence left over from preceding waves, which is an effect of the vertical wall. At higher water levels, the effect of the vertical wall on the inception point becomes more significant.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51879158)the 7th Generation Ultra Deep Water Drilling Unit Innovation Project by the Ministry of Industry and Information Technology of China.
文摘Semi-submersibles for offshore oil exploration and exploitation often suffer from severe wave impacts in extreme ocean environments.Owing to the complex wave interactions among structural components of semi-submersibles,in-depth analyses on the characteristics of wave impact events are of significance for both industry and academia.An experimental study was carried out to investigate the local wave impact loads on a semi-submersible,with focus on understanding the wave impacts by identifying typical impact modes.Quantitative criteria are proposed to classify major wave impacts on the semi-submersible into six modes and two types.The results show that the classification is reasonable and provides valuable information for studying wave impacts on semi-submersibles.The incident wave characteristics at the fore column of the semi-submersible have important influence on the wave impact mode.The fore-column dominating wave impacts exert the most intense loads on the fore column and feature well-developed breaking waves or slightly breaking waves at the fore column.However,the aft-column dominating wave impacts exert the most intense loads on the aft column or the deck bottom and feature non-breaking waves at the fore column.Energy loss during the fore-column impact weakens the impact severity on the aft column in the fore-column dominating wave impacts.The shoaling effect of the submerged pontoon and different motion configurations of the platform result in higher occurrence rate of the aft-column dominating wave impacts.Different impact modes are also distinguished by different spatial distributions of wave impact loads.
基金financially supported by the National Science and Technology Support Program of China(Grant No.2010BAC68B04)
文摘For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.
文摘An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.