期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Nanosecond laser shock detonation of nanodiamonds:from laser-matter interaction to graphite-to-diamond phase transition
1
作者 Xing Zhang Haofan Sun +4 位作者 Bo Mao Rui Dai Houlong Zhuang Yiliang Liao Qiong Nian 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第1期120-131,共12页
Nanodiamonds(NDs)have been widely explored for applications in drug delivery,optical bioimaging,sensors,quantum computing,and others.Room-temperature nanomanufacturing of NDs in open air using confined laser shock det... Nanodiamonds(NDs)have been widely explored for applications in drug delivery,optical bioimaging,sensors,quantum computing,and others.Room-temperature nanomanufacturing of NDs in open air using confined laser shock detonation(CLSD)emerges as a novel manufacturing strategy for ND fabrication.However,the fundamental process mechanism remains unclear.This work investigates the underlying mechanisms responsible for nanomanufacturing of NDs during CLSD with a focus on the laser-matter interaction,the role of the confining effect,and the graphite-to-diamond transition.Specifically,a first-principles model is integrated with a molecular dynamics simulation to describe the laser-induced thermo-hydrodynamic phenomena and the graphite-to-diamond phase transition during CLSD.The simulation results elucidate the confining effect in determining the material’s responses to laser irradiation in terms of the temporal and spatial evolutions of temperature,pressure,electron number density,and particle velocity.The integrated model demonstrates the capability of predicting the laser energy threshold for ND synthesis and the efficiency of ND nucleation under varying processing parameters.This research will provide significant insights into CLSD and advance this nanomanufacturing strategy for the fabrication of NDs and other high-temperature-high-pressure synthesized nanomaterials towards extensive applications. 展开更多
关键词 NANODIAMOND confined laser shock detonation first-principles modeling molecular dynamics simulation graphite-to-diamond transition
下载PDF
Investigation of system parameters towards safer impact based shock-to-detonation transition in a novel laser driven flyer plate prototype
2
作者 Gonca Saglam Ozkasapoglu Selis Onel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期103-113,共11页
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s... Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical. 展开更多
关键词 Laser driven flyer plate shock to detonation transition detonation Secondary explosives Pyrotechnic materials CONFINEMENT
下载PDF
Effect of chemical reactivity on the detonation initiation in shock accelerated flow in a confined space 被引量:4
3
作者 Yue-Jin Zhu Gang Dong +2 位作者 Yi-Xin Liu Bao-Chun Fan Hua Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第1期54-61,共8页
The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations, with emphasis placed o... The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations, with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave. It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemi- cal reactivity of the mixture. When the chemical reactivity enhances, the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations. Moreover, the detonation initiation would occur earlier in a mixture of more enhanced reactivity. The results reveal that the detona- tions arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism. 展开更多
关键词 Chemical reactivity Reactive shock bifurcation structure ~ detonation initiation Hot spot shock wave
下载PDF
Modeling the mechanics of HMX detonation using a Taylor–Galerkin scheme 被引量:1
4
作者 Adam V.Duran Veera Sundararaghavan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第3期143-147,共5页
Design of energetic materials is an exciting area in mechanics and materials science. Energetic composite materials are used as propellants, explosives, and fuel cell components. Energy release in these materials are ... Design of energetic materials is an exciting area in mechanics and materials science. Energetic composite materials are used as propellants, explosives, and fuel cell components. Energy release in these materials are accompanied by extreme events: shock waves travel at typical speeds of several thousand meters per second and the peak pressures can reach hundreds of gigapascals. In this paper, we develop a reactive dynamics code for modeling detonation wave features in one such material. The key contribution in this paper is an integrated algorithm to incorporate equations of state, Arrhenius kinetics, and mixing rules for particle detonation in a Taylor-Calerkin finite element simulation. We show that the scheme captures the distinct features of detonation waves, and the detonation velocity compares well with experiments reported in literature. 展开更多
关键词 Energetic composites detonation shock Finite element
下载PDF
Numerical study of detonation shock dynamics using generalized finite difference method 被引量:2
5
作者 CHEN YongLi HUANG KuiBang YU Xin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第10期1883-1888,共6页
The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) descr... The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) describing the propagation of thedetonation shock front. The numerical results of a rate-stick problem, a converging channel problem and an arc channel prob-lem for specified boundaries show that GFDM is effective on solving the level set equation in the irregular geometrical domain.The arrival time and the normal velocity distribution of the detonation shock front of these problems can then be obtainedconveniently with this method. The numerical results also confirm that when there is a curvature effect, the theory of DSDmust be considered for the propagation of detonation shock surface, while classic Huygens construction is not suitable anymore. 展开更多
关键词 generalized finite difference method detonation shock dynamics level set equation propagation of detonation shockfront irregular grids
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部