Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and period...Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.展开更多
To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active...To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.展开更多
Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer....Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.展开更多
A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock...A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock initiation. The strong reaction delay time and the shape of reaction shock front are determined in the cast composition B (RDX/TNT/60/40). A low level reaction zone has been found and analyzed..展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50875081)China Postdoctoral Science Foundation(Grant No.20080440992)+1 种基金the Planned Science and Technology Support Project of Hunan Province(Grant No.2009SK3159)Graduate Innovation Fund of Hunan University of Science and Technology(Grant No.S100109)
文摘Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.
基金Aeronautical Science Foundation of China (04B52012, 98B52023)
文摘To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.
基金supported by the National Natural Science Foundation of China(Nos.11472188 and11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.
文摘A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock initiation. The strong reaction delay time and the shape of reaction shock front are determined in the cast composition B (RDX/TNT/60/40). A low level reaction zone has been found and analyzed..