We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advan...We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.展开更多
As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the ma...As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the management cost. However, as a 'floating-potential conductor' near to a high-voltage transmission line, the helicopter would be at a high electric field region;and bring security risk to equipment and operating personnel. In this paper, the electric field strength near the cabin at locations of different distance from transmission lines is investigated by calculation, and the field in the helicopter cabin is also calculated with finite element method (FEM). The result indicates that the potential difference becomes higher with the decrease of the distance between the helicopter and transmission line. Considering the discharge energy and the guarantee of the persons’ safety, the safety distance is determined as d≥15 m.展开更多
The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined spa...The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).展开更多
The systematic or long-distance signal transmission plays crucial roles inanimal lives. Compared with animals, however, much less is known about the roles of long-distancesignal communication in plant lives. Using the...The systematic or long-distance signal transmission plays crucial roles inanimal lives. Compared with animals, however, much less is known about the roles of long-distancesignal communication in plant lives. Using the model plant Commelina communisL, we have probed theroot to shoot communication mediated by heat-shock signals. The results showed that a heat shock of5 min at 40°C in partial roots, i.e. half or even 1/4 root system, could lead to a significantdecrease in stomatal conductance. The regulation capability depends on both heat shock temperatureand the amount of root system, i.e. with higher temperature and more roots stressed, the leafconductance would decrease more significantly. Interestingly, the stomatal regulation by heat shocksignal is in a manner of oscillation: when stomata conductance decreased to the lowest level withinabout 30 min, it would increase rapidly and sometimes even exceed the initial level, and afterseveral cycles the stomata conductance would be finallystabilized at a lower level. Feeding xylemsap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggestingthat the heat shock-initiated signal is basically a positive signal. Further studies showed thatheat shock wasnot able to affect ABA content in xylem sap, and also, not able to lead to a decreasein leaf water status, which suggested that the stomatal regulation was neither mediated by ABA norby a hydraulic signal. Heat shock could lead to an increase in xylemsap H_2O_2 content, andmoreover, the removal of H_2O_2 by catalase could partially recover the stomatal inhibition by xylemsap collected from heat-shocked plants, suggesting that H_2O_2 might be able to act as one of theroot signals to control the stomatal movement. Due to the fact that heat-shock and drought areusually two concomitant stresses, the stomatal regulation by heat-shock signal should be ofsignificance for plant response to stresses. The observation for the stomatal regulation in anoscillation manner by presently identified new signals should contribute to further understanding ofthe mystery for the pant systematic signaling in response to stresses.展开更多
Fluid jet polishing(FJP)is a versatile polishing process that has many advantages compared to other polishing processes.Stand-off distance(SOD)is one of the key parameters in flu id jet polishi ng.However,relatively l...Fluid jet polishing(FJP)is a versatile polishing process that has many advantages compared to other polishing processes.Stand-off distance(SOD)is one of the key parameters in flu id jet polishi ng.However,relatively little research work has been carried out to investigate its effect of SOD on material removal characteristics and surface generation in FJP.In this paper,a systematic investigation of the effect of SOD on the tool influence function and surface topography in FJP was conducted.Experiments were designed for FJP two kinds of materials corresponding to ductile and brittle materials.They are nickel copper(NiCu)alloy and BK7 optical glass,respectively.In this study,the SOD was varied from 2 to 35 mm.Analysis and discussions were made on its effect on the shape of TIF,material removal rate,and surface topography.It is interesting to note that the TIF shape becomes a Gaussian-like shape with large SOD both on NiCu and BK7,which provides a novel way to optimize the TIF in FJP.The variation of the material removal rate and surface roughness versus SOD on NiCu and BK7 were also determined from the experimental results.Moreover,the surface topography of NiCu and BK7 were characterized from the results measured from the white light interferometer and scan electron microscope.The outcome of the study provides a better understanding of the material removal characteristics and surface generation mechanism in FJP.展开更多
基金co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)the National Natural Science Foundation of China(No.11372265)
文摘We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.
文摘As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the management cost. However, as a 'floating-potential conductor' near to a high-voltage transmission line, the helicopter would be at a high electric field region;and bring security risk to equipment and operating personnel. In this paper, the electric field strength near the cabin at locations of different distance from transmission lines is investigated by calculation, and the field in the helicopter cabin is also calculated with finite element method (FEM). The result indicates that the potential difference becomes higher with the decrease of the distance between the helicopter and transmission line. Considering the discharge energy and the guarantee of the persons’ safety, the safety distance is determined as d≥15 m.
基金funded by National Natural Science Foundation of China, grant ID: 11172245。
文摘The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).
基金supported by the National Basic Research Program of China(Grant No.2003CB114300)National Natural Science Foundation of China(Grant Nos.30270135&30470160).
文摘The systematic or long-distance signal transmission plays crucial roles inanimal lives. Compared with animals, however, much less is known about the roles of long-distancesignal communication in plant lives. Using the model plant Commelina communisL, we have probed theroot to shoot communication mediated by heat-shock signals. The results showed that a heat shock of5 min at 40°C in partial roots, i.e. half or even 1/4 root system, could lead to a significantdecrease in stomatal conductance. The regulation capability depends on both heat shock temperatureand the amount of root system, i.e. with higher temperature and more roots stressed, the leafconductance would decrease more significantly. Interestingly, the stomatal regulation by heat shocksignal is in a manner of oscillation: when stomata conductance decreased to the lowest level withinabout 30 min, it would increase rapidly and sometimes even exceed the initial level, and afterseveral cycles the stomata conductance would be finallystabilized at a lower level. Feeding xylemsap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggestingthat the heat shock-initiated signal is basically a positive signal. Further studies showed thatheat shock wasnot able to affect ABA content in xylem sap, and also, not able to lead to a decreasein leaf water status, which suggested that the stomatal regulation was neither mediated by ABA norby a hydraulic signal. Heat shock could lead to an increase in xylemsap H_2O_2 content, andmoreover, the removal of H_2O_2 by catalase could partially recover the stomatal inhibition by xylemsap collected from heat-shocked plants, suggesting that H_2O_2 might be able to act as one of theroot signals to control the stomatal movement. Due to the fact that heat-shock and drought areusually two concomitant stresses, the stomatal regulation by heat-shock signal should be ofsignificance for plant response to stresses. The observation for the stomatal regulation in anoscillation manner by presently identified new signals should contribute to further understanding ofthe mystery for the pant systematic signaling in response to stresses.
基金The work described in this paper was mainly supported by General Research Fund from the Research Grants Council(Project No.:15200119)Innovation and Technology Commission(ITC)(Project No.:ITS/076/18FP)of Hong Kong Special Administrative Region(HKSAR),Chinathe financial support from the Guangdong Natural Science Foundation Programme 2019-2020(Project No.:2O19A1515O12O15).
文摘Fluid jet polishing(FJP)is a versatile polishing process that has many advantages compared to other polishing processes.Stand-off distance(SOD)is one of the key parameters in flu id jet polishi ng.However,relatively little research work has been carried out to investigate its effect of SOD on material removal characteristics and surface generation in FJP.In this paper,a systematic investigation of the effect of SOD on the tool influence function and surface topography in FJP was conducted.Experiments were designed for FJP two kinds of materials corresponding to ductile and brittle materials.They are nickel copper(NiCu)alloy and BK7 optical glass,respectively.In this study,the SOD was varied from 2 to 35 mm.Analysis and discussions were made on its effect on the shape of TIF,material removal rate,and surface topography.It is interesting to note that the TIF shape becomes a Gaussian-like shape with large SOD both on NiCu and BK7,which provides a novel way to optimize the TIF in FJP.The variation of the material removal rate and surface roughness versus SOD on NiCu and BK7 were also determined from the experimental results.Moreover,the surface topography of NiCu and BK7 were characterized from the results measured from the white light interferometer and scan electron microscope.The outcome of the study provides a better understanding of the material removal characteristics and surface generation mechanism in FJP.