The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature an...The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.展开更多
Hypersonic air-breathing propulsion is one of the key techniques for future aviation and the ground aerodynamic testing for full scale test models with sufficient test time at flight conditions is of fundamental impor...Hypersonic air-breathing propulsion is one of the key techniques for future aviation and the ground aerodynamic testing for full scale test models with sufficient test time at flight conditions is of fundamental importance for verifying hypersonic air-breathing engines.Based on the backward detonation-driven concept,the hypersonic flight-duplicated shock tunnel(or JF-12 shock tunnel)has been successfully constructed and calibrated.This facility is capable of reproducing airflow for Mach numbers ranging from 5 to 9 at an altitude of 25-50 km,with a test duration of more than 100 ms.To quantify the performance of the shock tunnel,experiments were conducted to investigate the aerodynamic characteristics of the test flows and the effects of several critical techniques that play important roles in the operation of the shock tunnel.The stagnation pressure was constant within士5%and the average stagnation pressure varied by less than 0.048%/ms.The variation of the stagnation pressure in repeated experiments is less than 2.0%,indicating the good repeatability of the wind tunnel.The non-uniformity of the Mach number in the core flow field at the nozzle exit was within士2.5%.Additional,a uniform flow field is established upstream of the nozzle exit.The axial gradients of the flow field are small since the Mach number varies less than 1.7%/m.Findings regarding the ignition technology,diaphragm ruptures,detonation driver capacity,incident shock-wave decay,and tunnel operation mode are also presented.The findings of this study are not only helpful for operating the shock tunnel,but can also assist the future development of hypersonic wind tunnels.展开更多
An aerodynamic force and moment measurement was conducted in JF12 long-testduration detonation-driven shock tunnel of Institute of Mechanics,Chinese Academy of Sciences.The test duration of JF12 is 100–130 ms.The nom...An aerodynamic force and moment measurement was conducted in JF12 long-testduration detonation-driven shock tunnel of Institute of Mechanics,Chinese Academy of Sciences.The test duration of JF12 is 100–130 ms.The nominal Mach number is 7.0 and the exit diameter of the contoured nozzle is 2.5 m.The total enthalpy is 2.5 MJ/kg which duplicates the hypersonic flight conditions of Mach number 7.0 at 35 km altitude.The test model is the standard aerodynamic force model of 10° half-angle sharp cone.The length of the test model is 1500 mm and the weight is 57 kg.The aerodynamic forces were measured with a six-component strain balance.The angles of attack were set to be à5°,0°,5°,10° and 14°,respectively.The experimental results show that in the 100–130 ms test duration,the signals of strain balance have 3–4 complete vibration cycles.So,the aerodynamic forces and moments can be obtained directly by averaging the signals of balance without acceleration compensation.The force measurement error of repeatability of JF12 is less than 2%.The aerodynamic force coefficients of JF12 are in good agreement with those of conventional hypersonic wind tunnels.For this test model at Mach number 7.0 and total enthalpy of 2.5 MJ/kg,the real-gas effects on aerodynamic force characteristics are not very evident.展开更多
A detonation-driven shock tunnel is useful as a ground test facility for hypersonic flow research.The forward detonation driving mode is usually used to achieve high-enthalpy flows due to its strong driving capability...A detonation-driven shock tunnel is useful as a ground test facility for hypersonic flow research.The forward detonation driving mode is usually used to achieve high-enthalpy flows due to its strong driving capability.Unfortunately,the strong detonation wave front results in diaphragm fragments that disturb the test flow and scratch the nozzle or test models.In this study,a dual ignition system was developed to burst a metal diaphragm without fragmentation in the forward driving mode.A series of experiments were conducted to validate the proposed technique.The influences of the delay time setting on the test conditions were investigated in detail.Numerical simulations were also conducted to obtain a better understanding of the wave processes in the shock tube.The results showed that the dual ignition system solved the diaphragm issues in the forward driving mode.The test time was shortened due to the additional ignition close to the primary diaphragm;the smaller the delay time,the shorter the effective test time.However,a small amount of time loss is considered worthwhile because the severe diaphragm problems have been solved.展开更多
The free piston shock tunnel is a type of shock tunnel with high performance. For this type of tunnel, the influence mechanism of shock wave attenuation on tailored operation is explored by numerical simulation and th...The free piston shock tunnel is a type of shock tunnel with high performance. For this type of tunnel, the influence mechanism of shock wave attenuation on tailored operation is explored by numerical simulation and theoretical analysis. By introducing the normalized velocity, the simple constraint equation for shock wave under the tailored operation is deduced. Moreover, the real gas effect is also taken into account in this equation. Based on the equation, the tailored operation of shock tunnels can be predicted with very few calculations. The present study shows that the change rate of the thermodynamic state of the gas behind the shock wave is inconsistent with the attenuation rate of the shock wave, which is the fundamental reason why the wind tunnel achieves tailored operation at a lower Mach number of shock waves. This lower Mach number of shock waves differs from the corresponding ideal value by a factor, which is about the square root of shock attenuation rate.展开更多
Many experiment researches have been developed before. But most of them were carried out with the condition that the tunnel’s ratio of length and diameter (x/D) is under 1000. Recently, the process that compression w...Many experiment researches have been developed before. But most of them were carried out with the condition that the tunnel’s ratio of length and diameter (x/D) is under 1000. Recently, the process that compression wave convents into shock wave in the overlong tunnel has also been paid attention. In this paper, features of shock wave as it propagates through a overlong tunnel is investigated, rupturing thin films at the entrance to obtain three kinds of shock wave with different intensities. Then study their features respectively during they propagates through a overlong tunnel with x/D over 6000 at most. Comprehend shock wave more deeply by comparing the results of experiments.展开更多
The performance of combustion driver ignited by multi-spark plugs distributed along axial direction has been analysed and tested. An improved ignition method with three circumferential equidistributed ignitors at main...The performance of combustion driver ignited by multi-spark plugs distributed along axial direction has been analysed and tested. An improved ignition method with three circumferential equidistributed ignitors at main diaphragm has been presented, by which the produced incident shock waves have higher repeatability, and better steadiness in the pressure, temperature and velocity fields of flow behind the incidence shock, and thus meets the requirements of aerodynamic experiment. The attachment of a damping section at the end of the driver can eliminate the high reflection pressure produced by detonation wave, and the backward detonation driver can be employed to generate high enthalpy and high density test flow. The incident shock wave produced by this method is well repeated and with weak attenuation. The reflection wave caused by the contracted section at the main diaphragm will weaken the unfavorable effect of rarefaction wave behind the detonation wave, which indicates that the forward detonation driver can be applied in the practice. For incident shock wave of identical strength, the initial pressure of the forward detonation driver is about 1 order of magnitude lower than that of backward detonation.展开更多
文摘The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.
基金This work was supported by the National Natural Science Foundation of China(Grants 11602275 and 11532014)。
文摘Hypersonic air-breathing propulsion is one of the key techniques for future aviation and the ground aerodynamic testing for full scale test models with sufficient test time at flight conditions is of fundamental importance for verifying hypersonic air-breathing engines.Based on the backward detonation-driven concept,the hypersonic flight-duplicated shock tunnel(or JF-12 shock tunnel)has been successfully constructed and calibrated.This facility is capable of reproducing airflow for Mach numbers ranging from 5 to 9 at an altitude of 25-50 km,with a test duration of more than 100 ms.To quantify the performance of the shock tunnel,experiments were conducted to investigate the aerodynamic characteristics of the test flows and the effects of several critical techniques that play important roles in the operation of the shock tunnel.The stagnation pressure was constant within士5%and the average stagnation pressure varied by less than 0.048%/ms.The variation of the stagnation pressure in repeated experiments is less than 2.0%,indicating the good repeatability of the wind tunnel.The non-uniformity of the Mach number in the core flow field at the nozzle exit was within士2.5%.Additional,a uniform flow field is established upstream of the nozzle exit.The axial gradients of the flow field are small since the Mach number varies less than 1.7%/m.Findings regarding the ignition technology,diaphragm ruptures,detonation driver capacity,incident shock-wave decay,and tunnel operation mode are also presented.The findings of this study are not only helpful for operating the shock tunnel,but can also assist the future development of hypersonic wind tunnels.
基金supported by the National Natural Science Foundation of China(Nos.11672312,11532014)
文摘An aerodynamic force and moment measurement was conducted in JF12 long-testduration detonation-driven shock tunnel of Institute of Mechanics,Chinese Academy of Sciences.The test duration of JF12 is 100–130 ms.The nominal Mach number is 7.0 and the exit diameter of the contoured nozzle is 2.5 m.The total enthalpy is 2.5 MJ/kg which duplicates the hypersonic flight conditions of Mach number 7.0 at 35 km altitude.The test model is the standard aerodynamic force model of 10° half-angle sharp cone.The length of the test model is 1500 mm and the weight is 57 kg.The aerodynamic forces were measured with a six-component strain balance.The angles of attack were set to be à5°,0°,5°,10° and 14°,respectively.The experimental results show that in the 100–130 ms test duration,the signals of strain balance have 3–4 complete vibration cycles.So,the aerodynamic forces and moments can be obtained directly by averaging the signals of balance without acceleration compensation.The force measurement error of repeatability of JF12 is less than 2%.The aerodynamic force coefficients of JF12 are in good agreement with those of conventional hypersonic wind tunnels.For this test model at Mach number 7.0 and total enthalpy of 2.5 MJ/kg,the real-gas effects on aerodynamic force characteristics are not very evident.
基金supported by the National Natural Science Foundation of China (Nos. 11402275,11727901 and 11472280)
文摘A detonation-driven shock tunnel is useful as a ground test facility for hypersonic flow research.The forward detonation driving mode is usually used to achieve high-enthalpy flows due to its strong driving capability.Unfortunately,the strong detonation wave front results in diaphragm fragments that disturb the test flow and scratch the nozzle or test models.In this study,a dual ignition system was developed to burst a metal diaphragm without fragmentation in the forward driving mode.A series of experiments were conducted to validate the proposed technique.The influences of the delay time setting on the test conditions were investigated in detail.Numerical simulations were also conducted to obtain a better understanding of the wave processes in the shock tube.The results showed that the dual ignition system solved the diaphragm issues in the forward driving mode.The test time was shortened due to the additional ignition close to the primary diaphragm;the smaller the delay time,the shorter the effective test time.However,a small amount of time loss is considered worthwhile because the severe diaphragm problems have been solved.
基金supported by the National Natural Science Foundation of China (No. 11572303)。
文摘The free piston shock tunnel is a type of shock tunnel with high performance. For this type of tunnel, the influence mechanism of shock wave attenuation on tailored operation is explored by numerical simulation and theoretical analysis. By introducing the normalized velocity, the simple constraint equation for shock wave under the tailored operation is deduced. Moreover, the real gas effect is also taken into account in this equation. Based on the equation, the tailored operation of shock tunnels can be predicted with very few calculations. The present study shows that the change rate of the thermodynamic state of the gas behind the shock wave is inconsistent with the attenuation rate of the shock wave, which is the fundamental reason why the wind tunnel achieves tailored operation at a lower Mach number of shock waves. This lower Mach number of shock waves differs from the corresponding ideal value by a factor, which is about the square root of shock attenuation rate.
文摘Many experiment researches have been developed before. But most of them were carried out with the condition that the tunnel’s ratio of length and diameter (x/D) is under 1000. Recently, the process that compression wave convents into shock wave in the overlong tunnel has also been paid attention. In this paper, features of shock wave as it propagates through a overlong tunnel is investigated, rupturing thin films at the entrance to obtain three kinds of shock wave with different intensities. Then study their features respectively during they propagates through a overlong tunnel with x/D over 6000 at most. Comprehend shock wave more deeply by comparing the results of experiments.
基金State Science and Technology CommitteeNational Natural Foundation of Science of China (19082012)+1 种基金 Chinese Academy of SciencesProject of National High Technology of China.
文摘The performance of combustion driver ignited by multi-spark plugs distributed along axial direction has been analysed and tested. An improved ignition method with three circumferential equidistributed ignitors at main diaphragm has been presented, by which the produced incident shock waves have higher repeatability, and better steadiness in the pressure, temperature and velocity fields of flow behind the incidence shock, and thus meets the requirements of aerodynamic experiment. The attachment of a damping section at the end of the driver can eliminate the high reflection pressure produced by detonation wave, and the backward detonation driver can be employed to generate high enthalpy and high density test flow. The incident shock wave produced by this method is well repeated and with weak attenuation. The reflection wave caused by the contracted section at the main diaphragm will weaken the unfavorable effect of rarefaction wave behind the detonation wave, which indicates that the forward detonation driver can be applied in the practice. For incident shock wave of identical strength, the initial pressure of the forward detonation driver is about 1 order of magnitude lower than that of backward detonation.