期刊文献+
共找到25,395篇文章
< 1 2 250 >
每页显示 20 50 100
Shock-induced chemical reaction characteristics of PTFE-Al-Bi_(2)O_(3)reactive materials
1
作者 Chunlan Jiang Rong Hu +2 位作者 Jingbo Zhang Zaicheng Wang Liang Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期1-12,共12页
A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PT... A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure. 展开更多
关键词 PTFE/Al/Bi_(2)O_(3) shock-induced chemical reaction Energy release
下载PDF
Simulation of shock-induced instability using an essentially conservative adaptive CE/SE method 被引量:1
2
作者 付峥 刘凯欣 罗宁 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期29-33,共5页
An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its imple... An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its implementation is based on redefined conservation elements (CEs) and solution elements (SEs), optimized interpolations and a Courant number insensitive CE/SE scheme. This approach is used in two applications, the Woodward double Mach reflection and a two- component Richtmyer-Meshkov instability experiment. This scheme reveals the essential features of the investigated cases, captures small unstable structures, and yields a solution that is consistent with the results from experiments or other high order methods. 展开更多
关键词 CE/SE method shock-induced instability adaptive mesh refinement
下载PDF
Redistribution of Trace Elements During Shock-inducd Melting and Phase Tranzition of Minerals in the Suizhou l6 Chondrite
3
作者 XIE Xiande ZHANG Hong WANG Chunyun 《矿物学报》 CAS CSCD 北大核心 2013年第S1期116-116,共1页
The Suizhou meteorite is an L6 chondrite. This meteorite is consisted of olivine, low-Ca pyroxene, plagioclase, FeNi metal, troilite, whitlockite, chlorapatite, chromite and ilmenite. Olivine and pyroxene grains displ... The Suizhou meteorite is an L6 chondrite. This meteorite is consisted of olivine, low-Ca pyroxene, plagioclase, FeNi metal, troilite, whitlockite, chlorapatite, chromite and ilmenite. Olivine and pyroxene grains display shock-induced mosaic texture, and most plagioclase grains were melted and transformed to maskelynite. This meteorite contains a few very thin shock-produced melt veins ranging from 20 to 100 μm in width. They are chondritic in composition and contain abundant high-pressure minerals in two assemblages. One is the coarse-grained assemblage of ringwoodite, majorite, lingunite with minor amount of tuite, xieite, the CF-phase, akimotoite and amorphized perovskite, and the fine-grained assemblage (the melt vein matrix) composed of majorite-pyrope garnet, magnesiowüstite. FeNi metal and troilite in the Suizhou shock veins were molten and occur as small intergrowth grains or veinlets filling the interstices of garnet crystals or cracks in the vein matrix. It was revealed that olivine, pyroxene and plagioclase in the Suizhou shock veins have transformed in solid state to their high-pressure polymorphs ringwoodite, majorite, and lingunite, respectively, without change in their chemical compositions. 展开更多
关键词 trace element shock meltING PHASE transition LA-ICP-MS Suizhou METEORITE
下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact 被引量:1
4
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning Impact melting Momentum transfer
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
5
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
Experimental Study on Wire Melting Control Ability of Twin-Body Plasma Arc
6
作者 Ruiying Zhang Fan Jiang Long Xue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期184-194,共11页
The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding s... The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding speed as a characteristic quantity,the wire melting control ability of twin-body plasma arc was studied by adjusting the current separation ratio(under the condition of a constant total current),the wire current/main current and the position of the wire in the arc axial direction.The results showed that under the premise that the total current remains unchanged(100 A),as the current separation ratio increased,the middle and minimum melting amounts increased approximately synchronously under the effect of anode effect power,the first melting mass range remained constant;the maximum melting amount increased twice as fast as the middle melting amount under the effect of the wire feeding speed,and the second melting mass range was expanded.When the wire current increased,the anode effect power and the plasma arc power were both factors causing the increase in the wire melting amount;however,when the main current increased,the plasma arc power was the only factor causing the increase in the wire melting amount.The average wire melting increment caused by the anode effect power was approximately 2.7 times that caused by the plasma arc power.The minimum melting amount was not affected by the wire-torch distance under any current separation ratio tested.When the current separation ratio increased and reached a threshold,the middle melting amount remained constant with increasing wire-torch distance.When the current separation ratio continued to increase and reached the next threshold,the maximum melting amount remained constant with the increasing wire-torch distance.The effect of the wire-torch distance on the wire melting amount reduced with the increase in the current separation ratio.Through this study,the decoupling mechanism and ability of this innovative arc heat source is more clearly. 展开更多
关键词 Twin-body plasma arc melting control ability melting amount Current separation ratio
下载PDF
Melting points of ionic liquids:Review and evaluation
7
作者 Zhengxing Dai Lei Wang +1 位作者 Xiaohua Lu Xiaoyan Ji 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1802-1811,共10页
The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in... The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed. 展开更多
关键词 Ionic liquids melting point COSMO-RS QSPR GCM
下载PDF
Stability and melting behavior of boron phosphide under high pressure
8
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide STABILITY melting curve high pressure
下载PDF
Melting geodynamics reveals a subduction origin for the Purang ophiolite,Tibet,China
9
作者 Tao Ruan Zhong-Jie Bai +1 位作者 Wei-Guang Zhu Shi-Ji Zheng 《Acta Geochimica》 EI CAS CSCD 2024年第4期754-773,共20页
The debate regarding whether the Yarlung-Zangbo ophiolite(YZO)on the south of the Qinghai-Tibet Plateau,formed in a mid-ocean ridge(MOR)or a supra-subduction zone(SSZ)setting has remained unresolved.Here we present pe... The debate regarding whether the Yarlung-Zangbo ophiolite(YZO)on the south of the Qinghai-Tibet Plateau,formed in a mid-ocean ridge(MOR)or a supra-subduction zone(SSZ)setting has remained unresolved.Here we present petrological,mineralogical,and geochemical data associated with modeling melting geodynamics of the mantle peridotites from the Purang ophiolite in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)to explore its tectonic environment.The Purang lherzolites are characterized by the protogranular texture and have abyssal-peridotite-like mineral compositions,including low Cr^(#)(20-30)and TiO_(2) contents(<0.1wt%)in spinel,high Al_(2)O_(3)(2.9wt%-4.4wt%)and CaO(1.9wt%-3.7wt%)contents in orthopyroxene and LREE-depletion in clinopyroxene.Compositions of these lherzolites can be modeled by~11%dynamic melting of the DMM source with a small fraction of melt(~0.5%)entrapped within the source,a similar melting process to typical abyssal peridotites.The Purang harzburgites are characterized by the porphyroclastic texture and exhibit highly refractory mineral compositions such as high spinel Cr^(#)(40-68),low orthopyroxene Al_(2)O_(3)(<2.2wt%)and CaO(<1.1wt%)contents.Clinopyroxenes in these harzburgites are enriched in Sr(up to 6.0 ppm)and LREE[(Ce)N=0.02-0.4],but depleted in Ti(200 ppm,on average)and HREE[(Yb)N<2].Importantly,the more depleted samples tend to have higher clinopyroxene Sr and LREE contents.These observations indicate an open-system hydrous melting with a continuous influx of slab fluid at a subduction zone.The modeled results show that these harzburgites could be formed by 19%-23%hydrous melting with the supply rate of slab fluid at 0.1%-1%.The lower clinopyroxene V/Sc ratios in harzburgites than those in lherzolites suggest a high oxidation stage of the melting system of harzburgites,which is consistent with a hydrous melting environment for these harzburgites.It is therefore concluded that the Purang ophiolite has experienced a transformation of tectonic setting from MOR to SSZ. 展开更多
关键词 melting geodynamics SSZ peridotites MOR peridotites CLINOPYROXENE Purang ophiolite
下载PDF
Experimental study on reactions between alkaline basaltic melt and orthopyroxenes: constraints on the evolution of lithospheric mantle in the North China Craton
10
作者 Hanqi He Mingliang Wang Hongfeng Tang 《Acta Geochimica》 EI CAS CSCD 2024年第2期354-365,共12页
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar... The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene. 展开更多
关键词 Alkaline basaltic melt ORTHOPYROXENE melt–mineral reaction High-temperature and high-pressure experiment Genesis of basalt Evolution of lithospheric mantle in the North China Craton
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
11
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy PROCESSABILITY mechanical properties thermal stability
下载PDF
Strength and plasticity improvement induced by strong grain refinement after Zr alloying in selective laser-melted AlSiMg1.4 alloy
12
作者 Yao-xiang GENG Chun-feng ZAI +3 位作者 Jiang YU Hao TANG Hong-wei LÜ Zhi-jie ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2733-2742,共10页
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech... In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM. 展开更多
关键词 selective laser melting process stability grain refinement microstructure mechanical properties
下载PDF
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
13
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Microstructure and Oxidation Behavior of ZrB_(2)-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration
14
作者 TAN Min CHEN Xiaowu +5 位作者 YANG Jinshan ZHANG Xiangyu KAN Yanmei ZHOU Haijun XUE Yudong DONG Shaoming 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期955-964,共10页
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to... ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics. 展开更多
关键词 ultra-high temperature ceramic ZRB2-SIC oxidation behavior reactive melt infiltration
下载PDF
Formation and Properties of Organic Long Persistent Luminescence Crystals Containing Benzidine Derivatives by Melt Crystallization
15
作者 Norihito Doki Kiyoka Maruyama Masaaki Yokota 《Advances in Chemical Engineering and Science》 CAS 2024年第1期1-7,共7页
Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long per... Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long persistent luminescence (OLPL) crystals were prepared. The crystal structure of the prepared OLPL crystal was elucidated and the guideline for the design of OLPL crystal was clarified. LPL was observed in OLPL crystals prepared with TMB as the guest molecule and 1,2-bis(diphenylphosphino)ethane as the host molecule. XRD measurements of the OLPL crystals suggest that the guest molecule is a solid solution substituted in the stable crystal structure of the host molecule in a lattice-shrinking direction. 展开更多
关键词 melt Crystallization Host-Guest Chemistry
下载PDF
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
16
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
下载PDF
Investigation of Microstructure and Phase Composition of Chromic Oxide, AZS/Cr and High-alumina Refractories after Exposure of Basalt and Aluminaboronsilicate Glasses Melts
17
作者 Valeriy V.MARTYNENKO Iryna G.SHULYK +1 位作者 Yuliya Ye.MISHNYOVA Tetyana G.TYSHYNA 《China's Refractories》 CAS 2024年第1期1-6,共6页
The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the... The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated. 展开更多
关键词 high-alumina refractories chromic oxide refractories AZS/Cr refractories microstructure phase composition aluminaboronsilicate glasses melts basalt melt
下载PDF
Evolution of microstructure and mechanical properties in multi-layer 316L-TiC composite fabricated by selective laser melting additive manufacturing
18
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TASCI Elina AKBARZADEH 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2973-2991,共19页
In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,... In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles. 展开更多
关键词 multilayer metal-ceramic composites selective laser melting functionally graded materials 316 L stainless steel TIC
下载PDF
Structure-controlled slow dynamics in Al−Mg melts
19
作者 Fei-qi HUANG Xiao-dan WANG +6 位作者 Lin-si-tong HUANG Ju-rui MA Yu-jun JIANG Hua-shan LIU Jin-liang HU Hai-long PENG Bo ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3471-3485,共15页
Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnorma... Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts. 展开更多
关键词 Al−Mg melt slow dynamics chemically ordered structure topologically ordered structure molecular dynamics simulation
下载PDF
Ablation behaviour and mechanical performance of ZrB_(2)-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration
20
作者 ZHANG Jia-ping SU Xiao-xuan +2 位作者 LI Xin-gang WANG Run-ning FU Qian-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期633-644,共12页
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona... The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation. 展开更多
关键词 C/C composites ZrB_(2)-ZrC-SiC Vacuum filtration Reactive melt infiltration Ablation.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部