期刊文献+
共找到1,591篇文章
< 1 2 80 >
每页显示 20 50 100
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:20
1
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
下载PDF
Model for Asymmetry of Shock/Boundary Layer Interactions in Nozzle Flows 被引量:3
2
作者 Wang Chengpeng Zhuo Changfei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期146-153,共8页
The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was... The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs. 展开更多
关键词 asymmetry shock/boundary LAYER interactionS NOZZLE flow ENTRAINMENT
下载PDF
Spatial Interaction and Network Structure Evolvement of Cities in Terms of China's Rail Passenger Flows 被引量:12
3
作者 DAI Teqi JIN Fengjun 《Chinese Geographical Science》 SCIE CSCD 2008年第3期206-213,共8页
Cities separated in space are connected together by spatial interaction (SI) between them. But the studies focusing on the SI are relatively few in China mainly because of the scarcity of data. This paper deals with t... Cities separated in space are connected together by spatial interaction (SI) between them. But the studies focusing on the SI are relatively few in China mainly because of the scarcity of data. This paper deals with the SI in terms of rail passenger flows, which is an important aspect of the network structure of urban agglomeration. By using a data set consisting of rail O-D (origin-destination) passenger flows among nearly 200 cities, intercity rail distance O-D matrixes, and some other indices, it is found that the attenuating tendency of rail passenger is obvious. And by the analysis on dominant flows and spatial structure of flows, we find that passenger flows have a trend of polarizing to hubs while the linkages between hubs upgrade. However, the gravity model reveals an overall picture of convergence process over time which is not in our expectation of integration process in the framework of globalization and economic integration. Some driven factors for the re-organization process of the structure of urban agglomeration, such as technique advance, globalization, etc. are discussed further based on the results we obtained. 展开更多
关键词 rail passenger flows urban agglomerations spatial interaction gravity model distance decay
下载PDF
A NOTE ON THE INTERACTIONS OF ELEMENTARY WAVES FOR THE AR TRAFFIC FLOW MODEL WITHOUT VACUUM 被引量:4
4
作者 孙梅娜 《Acta Mathematica Scientia》 SCIE CSCD 2011年第4期1503-1512,共10页
In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the init... In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero. 展开更多
关键词 interaction of elementary wave Aw-Rascle model Riemann problem traffic flow hyperbolic conservation laws
下载PDF
The theory of interaction between wave and basic flow 被引量:3
5
作者 冉令坤 John P.Boyd 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期1138-1146,共9页
This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow. An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations ... This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow. An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations in Cartesian coordinates by using the Momentum-Casimir method. In the derivation, it is assumed that the transient disturbances satisfy the linear perturbation equations and the basic states are non-conservative and slowly vary in time and space. The diabatic heating composed of basic-state heating and perturbation heating is also introduced. Since the theory of wave-flow interaction is constructed in non-hydrostatic and ageostrophic dynamical framework, it is applicable to diagnosing the interaction between the meso-scale convective system in front and the background flow. It follows from the local interaction equation that the local tendency of pseudomomentum wave-activity density depends on the combination of the perturbation flux divergence second-order in disturbance amplitude, the local change of basic-state pseudomomentum density, the basic-state flux divergence and the forcing effect of diabatic heating. Furthermore, the tendency of pseudomomentum wave-activity density is opposite to that of basic-state pseudomomentum density. The globally integrated basic-state pseudomomentum equation and wave-activity equation reveal that the global development of basic-state pseudomomentum is only dominated by the basic-state diabatic heating while it is the forcing effect of total diabatic heating from which the global evolution of pseudomomentum wave activity results. Therefore, the interaction between the transient wave and the non-stationary and non-conservative basic flow is realized in virtue of the basic-state diabatic heating. 展开更多
关键词 wave flow interaction pseudomomentum wave activity diabatic heating Momentum Casimir method
下载PDF
Study on the characteristics of interaction flowfields induced by supersonic jet on a revolution body 被引量:2
6
作者 S.J.Luo Z.Y.Ni Y.F.Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第6期362-365,共4页
The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow di... The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow direction. The freestream Mach numbers are 5 and 6. The spatial and surface flow characteristics are illustrated by the schlieren photographs and the typical pressure distribution. The results show that there are multi-wave system, separation, reattachment, multi-peak pressure, high-pressure and low-pressure zone boundaries obvious distinction in tri-jets interference flowfield. The present paper also analyzes how do the pressure ratio, the angle of attack, and Mach number effect on tri-jets interaction characteristics. 展开更多
关键词 Hypersonic flow Lateral jet interaction Wind tunnel Schlieren visualization PRESSURE
下载PDF
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
7
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition Multiphase flow Tight rock interacting capillary bundle model Wettability
下载PDF
Interactions between gas flow and reversible chemical reaction in porous media 被引量:1
8
作者 JIANG Yuan-yong XU Zeng-he +1 位作者 ZHANG Meng-zhou BAI Li-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1144-1154,共11页
Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite ... Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1. 展开更多
关键词 POROUS media COMPRESSIBLE gas flow REVERSIBLE chemical reaction interaction
下载PDF
Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with position preference 被引量:2
9
作者 Gaurav Pandey K.Ramachandra Rao Dinesh Mohan 《Journal of Modern Transportation》 2017年第3期163-177,共15页
This paper proposes and validates a modified cellular automata model for determining interaction rate (i.e. number of car-following/overtaking instances) using traffic flow data measured in the field. The proposed m... This paper proposes and validates a modified cellular automata model for determining interaction rate (i.e. number of car-following/overtaking instances) using traffic flow data measured in the field. The proposed model considers lateral position preference by each vehicle type and introduces a position preference parameter fl in the model which facilitates gradual drifting towards preferred position on road, even if the gap in front is sufficient. Additionally, the model also improves upon the conven- tional model by calculating safe front and back gap dynamically based on speed and deceleration properties of leader and follower vehicles. Sensitivity analysis was carried out to determine the effect of β on vehicular interac- tions and the model was calibrated and validated using interaction rates observed in the field. Paired tests were conducted to determine the determining interaction rates validity of the model in Results of the simulations show that there is a parabolic relationship between area occupancy and interaction rate of different vehicle types. The model performed satisfactorily as the simulated interaction rate between different vehicle types were found to be statistically similar to those observed in field. Also, as expected, the interaction rate between light motor vehicles (LMVs) and heavy motor vehicles (HMVs) were found to be higher than that between LMVs and three wheelers because LMVs and HMVs share the same lane. This could not be done using conventional CA models as lateral movement rules were dictated by only speeds and gaps. So, in conventional models, the vehicles would end up in positions which are not realistic. The position preference parameter introduced in this model motivates vehicles to stay in their preferred positions. This study demonstrates the use of interaction rate as a measure to validate micro- scopic traffic flow models. 展开更多
关键词 Cellular automata Vehicular interaction ratePosition preference Traffic flow modelling Video-graphic survey
下载PDF
Nonlinear Analysis of Flexible and Steel Catenary Risers with Internal Flow and Seabed Interaction Effects 被引量:4
10
作者 陈海飞 徐思朋 郭海燕 《Journal of Marine Science and Application》 2011年第2期156-162,共7页
Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flow... Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme. 展开更多
关键词 flexible riser steel catenary riser (SCR) rod model internal flow effective tension seabed interaction
下载PDF
Numerical Simulation of Interaction Between Laminar Flow and Elastic Sheet 被引量:4
11
作者 许栋 Munjiza A Williams J J R 《Transactions of Tianjin University》 EI CAS 2012年第2期85-89,共5页
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo... A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data. 展开更多
关键词 fluid-structure interaction (FSI) numerical simulation immersed boundary method combined finite-discrete element method three-dimensional flow
下载PDF
Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions 被引量:2
12
作者 WANG Zhi-wei HE Yan-ping +4 位作者 LI Ming-zhi QIU Ming HUANG Chao LIU Ya-dong WANG Zi 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期914-923,共10页
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte... Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend. 展开更多
关键词 two-phase flow 90°pipe bend slug flow fluid−structure interaction dynamic response characteristics
下载PDF
Patient-Specific Echo-Based Fluid-Structure Interaction Modeling Study of Blood Flow in the Left Ventricle with Infarction and Hypertension 被引量:2
13
作者 Longling Fan Jing Yao +2 位作者 Chun Yang Di Xu Dalin Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期221-237,共17页
Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)mode... Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)models were introduced to perform ventricle mechanical analysis,investigate flow behaviors,and evaluate the impact of myocardial infarction(MI)and hypertension on blood flow in the LV.Echo image data were acquired from 3 patients with consent obtained:one healthy volunteer(P1),one hypertension patient(P2),and one patient who had an inferior and posterior myocardial infarction(P3).The nonlinear Mooney-Rivlin model was used for ventricle tissue with material parameter values chosen to match echo-measure LV volume data.Using the healthy case as baseline,LV with MI had lower peak flow velocity(30%lower at beginejection)and hypertension LV had higher peak flow velocity(16%higher at begin-filling).The vortex area(defined as the area with vorticity>0)for P3 was 19%smaller than that of P1.The vortex area for P2 was 12%smaller than that of P1.At peak of filling,the maximum flow shear stress(FSS)for P2 and P3 were 390%higher and 63%lower than that of P1,respectively.Meanwhile,LV stress and strain of P2 were 41%and 15%higher than those of P1,respectively.LV stress and strain of P3 were 36%and 42%lower than those of P1,respectively.In conclusion,FSI models could provide both flow and structural stress/strain information which would serve as the base for further cardiovascular investigations related to disease initiation,progression,and treatment strategy selections.Large-scale studies are needed to validate our findings. 展开更多
关键词 Fluid-structure interaction model VENTRICLE flow fluid dynamic VENTRICLE material properties VENTRICLE mechanics
下载PDF
Interannual variations in energy conversion and interaction between the mesoscale eddy field and mean flow in the Kuroshio south of Japan 被引量:2
14
作者 马利斌 王强 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第1期210-222,共13页
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cy... Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld. 展开更多
关键词 eddy kinetic energy energy conversion rate eddy-mean flow interaction Reynolds stress
下载PDF
Numerical Study on the Aerodynamic and Fluid−Structure Interaction of An NREL-5MW Wind Turbine
15
作者 ZHAO Mi YU Wan-li +2 位作者 WANG Pi-guang QU Yang DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期363-378,共16页
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ... A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model. 展开更多
关键词 computational fluid dynamics methods(CFD) tower shadow effect aerodynamic performance fluidstructure interaction space flow field
下载PDF
Multi-fracture interactions during two-phase flow of oil and water in deformable tight sandstone oil reservoirs 被引量:2
16
作者 Yongjun Yu Wancheng Zhu +3 位作者 Lianchong Li Chenhui Wei Baoxu Yan Shuai Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期821-849,共29页
Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized wate... Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized water found in China.In this regard,a coupled model considering two-phase flow of oil and water,as well as deformation and damage evolution of porous media,is proposed and validated using associated results,including the oil depletion process,analytical solution of stress shadow effect,and physical experiments on multi-fracture interactions and fracture propagation in unsaturated seepage fields.Then,the proposed model is used to study the behavior of multi-fracture interactions in an unsaturated reservoir in presence of water and oil.The results show that conspicuous interactions exist among multiple induced fractures.Interaction behavior varies from extracted geological profiles of the reservoir due to in situ stress anisotropy.The differential pressures of water and that of oil in different regions of reservoir affect interactions and trajectories of multi-fractures to a considerable degree.The absolute value of reservoir average pressure is a dominant factor affecting fracture interactions and in favor of enhancing fracture network complexity.In addition,difference of reservoir average pressures in different regions of reservoir would promote the fracturing effectiveness.Factors affecting fracture interactions and reservoir treatment effectiveness are quantitatively estimated through stimulated reservoir area.This study confirms the significance of incorporating the two-phase flow process in analyses of multifracture interactions and fracture trajectory predictions during tight sandstone oil reservoir developments. 展开更多
关键词 Multi-fracture interactions Two-phase flow Porous media deformation Hydraulic fracturing Continuum damage mechanics
下载PDF
Parallelization strategies for resolved simulations of fluid-structure-particle interactions
17
作者 Jianhua QIN Fei LIAO +1 位作者 Guodan DONG Xiaolei YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期857-872,共16页
Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boun... Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls. 展开更多
关键词 particle-resolved direct numerical simulation particle-laden flow complex geometry resolved fluid-structure-particle interaction(RFSPI) immersed boundary(IB)method
下载PDF
Cell-fluid Interaction: Coupling Between the Deformation of an Adherent Leukocyte and the Shear Flow 被引量:2
18
作者 X.H. LIU~(1,2) H. HUANG~1 C. YU~1 M.J. ZOU~1 X. WANG~3 1(Institute of Biomedical Engineering, Center of West China Medical Sciences, Sichuan University, Chengdu 610041, China)2(Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China)3(LEMTA-UMR-CNRS 7563, Vandoeuvre-les-Nancy, 54500, BP160, France) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期22-,共1页
关键词 Cell-fluid interaction Coupling Between the Deformation of an Adherent Leukocyte and the Shear flow CELL
下载PDF
ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION 被引量:4
19
作者 Wiroj LIMTRAKARN Pramote DECHAUMPHAI 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期597-606,共10页
An adaptive finite element method for high-speed flow-structure interaction is pre- sented.The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations fo... An adaptive finite element method for high-speed flow-structure interaction is pre- sented.The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior.The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method.The finite element formulation and computational procedure are de- scribed.Interactions between the high-speed flow,structural heat transfer,and deformation are studied by two applications of Mach 10 flow over an inclined plate,and Mach 4 flow in a channel. 展开更多
关键词 flow-structure interaction adaptive mesh aerodynamic heating rate
下载PDF
Determination of Slip Length in Couette Flow Based on an Analytical Simulation Incorporating Surface Interaction 被引量:1
20
作者 赵欣 魏超 苑士华 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第3期77-81,共5页
An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account o... An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment. 展开更多
关键词 MD Determination of Slip Length in Couette flow Based on an Analytical Simulation Incorporating Surface interaction
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部