期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Structural uncertainty quantification of Reynolds-Averaged Navier–Stokes closures for various shock-wave/boundary layer interaction flows
1
作者 Fanzhi ZENG Tianxin ZHANG +2 位作者 Denggao TANG Jinping LI Chao YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期34-48,共15页
Accurate prediction of Shock-Wave/Boundary Layer Interaction(SWBLI)flows has been a persistent challenge for linear eddy viscosity models.A major limitation lies in the isotropic representation of the Reynolds stress,... Accurate prediction of Shock-Wave/Boundary Layer Interaction(SWBLI)flows has been a persistent challenge for linear eddy viscosity models.A major limitation lies in the isotropic representation of the Reynolds stress,as assumed under the Boussinesq approximation.Recent studies have shown promise in improving the prediction capability for incompressible separation flows by perturbing the Reynolds-stress anisotropy tensor.However,it remains uncertain whether this approach is effective for SWBLI flows,which involve compressibility and discontinuity.To address this issue,this study systematically quantifies the structural uncertainty of the anisotropy for oblique SWBLI flows.The eigenspace perturbation method is applied to perturb the anisotropy tensor predicted by the Menter Shear–Stress Transport(SST)model and reveal the impacts of anisotropy on the prediction of quantities of interest,such as separation and reattachment positions,wall static pressure,skin friction,and heat flux.The results demonstrate the potential and reveal the challenges of eigenspace perturbation in improving the SST model.Furthermore,a detailed analysis of turbulent characteristics is performed to identify the source of uncertainty.The findings indicate that eigenspace perturbation primarily affects turbulent shear stress,while the prediction error of the SST model is more related to turbulent kinetic energy. 展开更多
关键词 shock-wave/boundary layer interaction(SWBLI) Turbulence models Uncertainty analysis Eigenspace perturbation Anisotropy
原文传递
Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without Spark Jet control 被引量:10
2
作者 Yang Guang Yao Yufeng +3 位作者 Fang Jian Gan Tian Li Qiushi Lu Lipeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期617-629,共13页
The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction ... The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted. 展开更多
关键词 Large-eddy simulation shock-wave:Turbulent boundary layer interactiON Spark Jet control
原文传递
有二次涡的激波边界层干扰流动的DPNS和NS方程计算 被引量:1
3
作者 申义庆 高智 王汝权 《空气动力学学报》 EI CSCD 北大核心 2000年第4期407-412,共6页
本文针对具有二次涡复杂分离再附现象的激波边界层干扰流动 ,数值地考察了扩散抛物化Navier Stokes(DPNS)方程组的适用情况。壁面摩阻和压力、主涡和二次涡的涡高和涡长、分离再附位置以及流线图等特性的计算表明
关键词 NS方程组 DPNS方程组 激波边界层干扰流动
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部