Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and tae...Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.展开更多
The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase tran...The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase transition mechanism of the water under multiple shocks is discussed.The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages:relaxation stage,decline stage,and recovery stage.In the early stage of the phase transition,the new phase particles began to form around the quartz/window interface.It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work.Due to the new phase core being much smaller than the wavelength of the incident light,the transmittance of the sample within the relaxation stage remains steady.The decline stage can be divided into the rapid descent stage and the slow descent stage in this work,which is considered as the different growth rates of the new phase particle under different shock loadings.The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value.However,the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other,which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.展开更多
We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien's equa- tion of state (EOS) that optimized by "exact" numerical molecular dynamic data at high temperatures and press...We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien's equa- tion of state (EOS) that optimized by "exact" numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien's EOS with the existed experimental data and the direct simu- lations show that the behavior of the improved Tsien's EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien's EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.展开更多
AIM. To study whether heat-shocked tumor cells could enhance the effect of tumor cell lysate-pulsed dendritic cells (DCs) in evoking anti-tumor immune response in vivo. METHODS: Mouse undifferentiated colon cancer ...AIM. To study whether heat-shocked tumor cells could enhance the effect of tumor cell lysate-pulsed dendritic cells (DCs) in evoking anti-tumor immune response in vivo. METHODS: Mouse undifferentiated colon cancer cells (CT-26) were heated at 42℃ for 1 h and then frozenthawed. The bone marrow-derived DCs pulsed with heatshocked CT-26 cell lysate (HSCT-26 DCs) were recruited to immunize syngeneic naive BALB/c mice. The cytotoxic activity of tumor specific cytotoxic T lymphocytes (CTLs) in mouse spleen was evaluated by IFN-enzyme-linked immunospot (ELISpot) and LDH release assay. The immunoprophylactic effects induced by HSCT-26 DCs in mouse colon cancer model were compared to those induced by single CT-26 cell lysate-pulsed DCs (CT-26 DCs) on tumor volume, peritoneal metastasis and survival time of the mice. RESULTS: Heat-treated CT-26 cells showed a higher hsp70 protein expression. Heat-shocked CT-26 cell lysate pulsing elevated the co-stimulatory and MHC-Ⅱ molecule expression of bone marrow-derived DCs as well as interleukin-12 p70 secretion. The IFN-y secreting CTLs induced by HSCT-26 DCs were significantly more than those induced by CT-26 DCs (P=0.002). The former CTLs' specific cytotoxic activity was higher than the latter CTLs' at a serial E/T ratio of 10:1, 20:1, and 40:1. Mouse colon cancer model showed that the tumor volume of HSCT-26 DC vaccination group was smaller than that of CT-26 DC vaccination group on tumor volume though there was no statistical difference between them (24 mm^3 vs 8 mm^3, P=0.480). The median survival time of mice immunized with HSCT-26 DCs was longer than that of those immunized with CT-26 DCs (57 d vs 43 d, P = 0.0384). CONCLUSION: Heat-shocked tumor cell lysate-pulsed DCs can evoke anti-tumor immune response in vivo effectively and serve as a novel DC-based tumor vaccine.展开更多
Raman spectra of liquid nitromethane were measured in single-shock experiments using transient Raman scattering system with high sensitivity. The measurement system was combined with a two-stage light gas gun to inter...Raman spectra of liquid nitromethane were measured in single-shock experiments using transient Raman scattering system with high sensitivity. The measurement system was combined with a two-stage light gas gun to interrogate the vibrational mode-dependent behaviors of shock-compressed nitromethane molecules. Up to 12 GPa, all Raman peaks were able to be clearly detected, and showed the shock-induced shifting and broadening, but no signs of chemical changes occurred in the sample. Thus, it is concluded that chemical reactions could not be initiated in singly-shocked nitromethane below 12 GPa.展开更多
We apply a hydrodynamic approach to analyze ejecta emanating from doubly shocked liquid metals. In particular, we are interested incharacterizing ejecta velocities in such situations by treating the problem as a limit...We apply a hydrodynamic approach to analyze ejecta emanating from doubly shocked liquid metals. In particular, we are interested incharacterizing ejecta velocities in such situations by treating the problem as a limiting case of the Richtmyer–Meshkov instability. We findexisting models for ejecta velocities do not adequately capture all the relevant physics, including compressibility, nonlinearities, and nonstandardshapes. We propose an empirical model that is capable of describing ejecta behavior across the entire parameter range of interest. We thensuggest a protocol to apply this model when the donor material is shocked twice in rapid succession. Finally, the model and the suggestedapproach are validated using detailed continuum hydrodynamic simulations. The results provide a baseline understanding of the hydrodynamicaspects of ejecta, which can then be used to interpret experimental data from target experiments.展开更多
We conduct molecular dynamics simulations of the ejection process from a grooved Pb surface subjected to supported and unsupported shock waves with various shock-breakout pressures(PSB) inducing a solid–liquid phas...We conduct molecular dynamics simulations of the ejection process from a grooved Pb surface subjected to supported and unsupported shock waves with various shock-breakout pressures(PSB) inducing a solid–liquid phase transition upon shock or release. It is found that the total ejecta mass changing with PSBunder a supported shock reveals a similar trend with that under an unsupported shock and the former is always less than the latter at the same PSB. The origin of such a discrepancy could be unraveled that for an unsupported shock, a larger velocity difference between the jet tip and its bottom at an early stage of jet formation results in more serious damage, and therefore a greater amount of ejected particles are produced. The cumulative areal density distributions also display the discrepancy. In addition, we discuss the difference of these simulated results compared to the experimental findings.展开更多
Sound velocities in shock-loaded solids are not only important to determine bulk moduli of solids at high pressures, but are also crucial to inform the shock melting of solids upon loading. In this letter, we first re...Sound velocities in shock-loaded solids are not only important to determine bulk moduli of solids at high pressures, but are also crucial to inform the shock melting of solids upon loading. In this letter, we first report on shock melting of porous solids at high pressures by measuring sound velocities in the porous iron of average density 6.90 g/cm^(3) in the pressure range of 110-180 GPa. The measured sound velocity softens at pressures from 122 to 156 Gpa, which may be attributed to shock melting of the porous iron.展开更多
In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/4...In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/46 cases.Simultaneously,there was a markeddrop in Bp,P【0.05.Following the shocked time prolonged,dysrhythmia was getting severe。AfterEA”Rengzhong"(n=14)or“Zusanli”(n=12),BP was significantly increased(P【0.05),anddysrhythmia of EEG showed clear improvement in most of the rats。There was a close relation be-tween the changes of EEG and BP,the change of EEG had a direct bearing on the change of BP.展开更多
Live bacteria-mediated antitumor therapies mark a pivotal point in cancer immunotherapy.However,the difficulty in reconciling the safety and efficacy of bacterial therapies has limited their application.Improving bact...Live bacteria-mediated antitumor therapies mark a pivotal point in cancer immunotherapy.However,the difficulty in reconciling the safety and efficacy of bacterial therapies has limited their application.Improving bacterial tumor-targeted delivery while maintaining biosafety is a critical hurdle for the clinical translation of live microbial therapy for cancer.Here,we developed“dead”yet“functional”Salmonella-loaded macrophages using liquid nitrogen cold shock of an attenuated Salmonella typhimurium VNP20009-contained macrophage cell line.The obtained“dead”macrophages achieve an average loading of approximately 257 live bacteria per 100 cells.The engineered cells maintain an intact cellular structure but lose their original pathogenicity,while intracellular bacteria retain their original biological activity and are delay freed,followed by proliferation.This“Trojan horse”-like bacterial camouflage strategy avoids bacterial immunogenicity-induced neutrophil recruitment and activation in peripheral blood,reduces the clearance of bacteria by neutrophils and enhances bacterial tumor enrichment efficiently after systemic administration.Furthermore,this strategy also strongly activated the tumor microenvironment,including increasing antitumor effector cells(including M1-like macrophages and CD8+Teffs)and decreasing protumor effector cells(including M2-like macrophages and CD4+Tregs),and ultimately improved antitumor efficacy in a subcutaneous H22 tumor-bearing mouse model.The cryo-shocked macrophage-mediated bacterial delivery strategy holds promise for expanding the therapeutic applications of living bacteria for cancer.展开更多
The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engin...The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).展开更多
The physical fields in porous materials under strong shock wave reaction are very complicated. We simulate such systems using the grain contact material point method. The complex temperature fields in the material are...The physical fields in porous materials under strong shock wave reaction are very complicated. We simulate such systems using the grain contact material point method. The complex temperature fields in the material are treated with the morphological characterization. To compare the structures and evolution of characteristic regimes under various temperature thresholds, we introduce two concepts, structure similarity and process similarity. It is found that the temperature pattern dynamics may show high similarity under various conditions. Within the same material, the structures and evolution of high-temperature regimes may show high similarity if the shock strength and temperature threshold are chosen appropriately. For process similarity in materials with high porosity, the required temperature threshold increases parabolically with the impact velocity. When the porosity becomes lower, the increasing rate becomes higher. For process similarity in different materials, the required temperature threshold and the porosity follow a power-law relationship in some range.展开更多
Hydrodynamic instabilities induced by a shock wave can be observed in both natural phenomena and engineering applications,and are frequently employed to study gas dynamics, vortex dynamics, and turbulence. Controlling...Hydrodynamic instabilities induced by a shock wave can be observed in both natural phenomena and engineering applications,and are frequently employed to study gas dynamics, vortex dynamics, and turbulence. Controlling these instabilities is very desirable, but remains a challenge in applications such as inertial confinement fusion. The field of “shock-gas-layer interaction” has experienced rapid development, driven by advances in experimental and numerical techniques as well as theoretical understanding. This domain has uncovered a diverse array of wave patterns and hydrodynamic instabilities, such as reverberating waves, feedthrough, abnormal and freeze-out Richtmyer-Meshkov instability, among others. Studies have shown that it is possible to suppress these instabilities by appropriately configuring a gas layer. Here we review the recent progress in theories,experiments, and simulations of shock-gas-layer interactions, and the feedthrough mechanism, the reverberating waves and their induced additional instabilities, as well as the convergent geometry and reshock effects, are focused. The conditions for suppressing hydrodynamic instabilities are summarized. The review concludes by highlighting the challenges and prospects for future research in this area.展开更多
The aim of this study is to compare the experimentally shock-induced features with those in naturally shocked chondrites and to test the feasibility of experimentally calibrating naturally induced features in shocked ...The aim of this study is to compare the experimentally shock-induced features with those in naturally shocked chondrites and to test the feasibility of experimentally calibrating naturally induced features in shocked H- and L-chondrites. Samples of the Jilin chondrite (H5) were experimentally shock-loaded at the following peak pressures: 12, 27, 39, 53, 78, 83, 93 and 133 GPa respectively. Chondritic melts were first obtained at P>78 GPa and more than 60% melting was achieved at P^133 GPa. No high-pressure phases were observed in any of the shocked samples, neither in the deformed nor in the molten regions. Textural relations and mineral assemblages of the shocked samples are comparable to those encountered in the heavily shocked H-chondrite Yanzhuang but differ considerably from those found in heavily shocked L6 chondrites. Shock melt veins in L6 chondrites contain high-pressure polymorphs of olivine and pyroxene and high pressure liquidus phases. Scaling from shock experiments on millimeter-sized samples to natural shock features on kilometer-sized asteroids poses considerable problems in quantifying the P-T conditions during natural shock events on asteroids.展开更多
1 Introduction The information of the deformation and phase transformation of minerals under the impact of different intensities can be obtained from some meteorites. Therefore, meteorites are good samples for the stu...1 Introduction The information of the deformation and phase transformation of minerals under the impact of different intensities can be obtained from some meteorites. Therefore, meteorites are good samples for the study of shock effects of minerals in natural impact process. Orthopyroxene is a kind of main rock-forming mineral in chondrite. The study of展开更多
The latest applications of laser shock processing were summarized in this paper,and laser peening with water confined layer has been applied to Ti6Al4V titanium alloy using Nd:glass pulse laser.The profile of plastic ...The latest applications of laser shock processing were summarized in this paper,and laser peening with water confined layer has been applied to Ti6Al4V titanium alloy using Nd:glass pulse laser.The profile of plastic deformation and residual stresses on metal surface were studied with different laser power density.The investigation results show that peak depth of plastic deformation is in linear proportion to laser power density (5.75GW/cm2 to 9.5 GW/cm2),and maximal surface compressive residual stress is up to 375MPa at 8.25GW/cm2.It was ensured that the compressive residual stress field related to laser power density and shocked times.As spot overlapping ratio of 33%,the circle spot can get a relative smooth surface.Almen strip with thickness 2.5mm was shocked as the preliminary verification test of residual stresses,and it is shown that excessive peening times is unavailable to thin-wall parts just as edge of fan blades.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
基金supported by Science and Technology Planning Project of Guangdong Province,2023B1212060048.
文摘Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.
基金the National Natural Science Foundation of China(Grant No.11604271).
文摘The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase transition mechanism of the water under multiple shocks is discussed.The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages:relaxation stage,decline stage,and recovery stage.In the early stage of the phase transition,the new phase particles began to form around the quartz/window interface.It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work.Due to the new phase core being much smaller than the wavelength of the incident light,the transmittance of the sample within the relaxation stage remains steady.The decline stage can be divided into the rapid descent stage and the slow descent stage in this work,which is considered as the different growth rates of the new phase particle under different shock loadings.The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value.However,the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other,which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.
文摘We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien's equa- tion of state (EOS) that optimized by "exact" numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien's EOS with the existed experimental data and the direct simu- lations show that the behavior of the improved Tsien's EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien's EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.
基金Supported by the Natural Science Foundation of Shaanxi Province,No.2004C271
文摘AIM. To study whether heat-shocked tumor cells could enhance the effect of tumor cell lysate-pulsed dendritic cells (DCs) in evoking anti-tumor immune response in vivo. METHODS: Mouse undifferentiated colon cancer cells (CT-26) were heated at 42℃ for 1 h and then frozenthawed. The bone marrow-derived DCs pulsed with heatshocked CT-26 cell lysate (HSCT-26 DCs) were recruited to immunize syngeneic naive BALB/c mice. The cytotoxic activity of tumor specific cytotoxic T lymphocytes (CTLs) in mouse spleen was evaluated by IFN-enzyme-linked immunospot (ELISpot) and LDH release assay. The immunoprophylactic effects induced by HSCT-26 DCs in mouse colon cancer model were compared to those induced by single CT-26 cell lysate-pulsed DCs (CT-26 DCs) on tumor volume, peritoneal metastasis and survival time of the mice. RESULTS: Heat-treated CT-26 cells showed a higher hsp70 protein expression. Heat-shocked CT-26 cell lysate pulsing elevated the co-stimulatory and MHC-Ⅱ molecule expression of bone marrow-derived DCs as well as interleukin-12 p70 secretion. The IFN-y secreting CTLs induced by HSCT-26 DCs were significantly more than those induced by CT-26 DCs (P=0.002). The former CTLs' specific cytotoxic activity was higher than the latter CTLs' at a serial E/T ratio of 10:1, 20:1, and 40:1. Mouse colon cancer model showed that the tumor volume of HSCT-26 DC vaccination group was smaller than that of CT-26 DC vaccination group on tumor volume though there was no statistical difference between them (24 mm^3 vs 8 mm^3, P=0.480). The median survival time of mice immunized with HSCT-26 DCs was longer than that of those immunized with CT-26 DCs (57 d vs 43 d, P = 0.0384). CONCLUSION: Heat-shocked tumor cell lysate-pulsed DCs can evoke anti-tumor immune response in vivo effectively and serve as a novel DC-based tumor vaccine.
文摘Raman spectra of liquid nitromethane were measured in single-shock experiments using transient Raman scattering system with high sensitivity. The measurement system was combined with a two-stage light gas gun to interrogate the vibrational mode-dependent behaviors of shock-compressed nitromethane molecules. Up to 12 GPa, all Raman peaks were able to be clearly detected, and showed the shock-induced shifting and broadening, but no signs of chemical changes occurred in the sample. Thus, it is concluded that chemical reactions could not be initiated in singly-shocked nitromethane below 12 GPa.
文摘We apply a hydrodynamic approach to analyze ejecta emanating from doubly shocked liquid metals. In particular, we are interested incharacterizing ejecta velocities in such situations by treating the problem as a limiting case of the Richtmyer–Meshkov instability. We findexisting models for ejecta velocities do not adequately capture all the relevant physics, including compressibility, nonlinearities, and nonstandardshapes. We propose an empirical model that is capable of describing ejecta behavior across the entire parameter range of interest. We thensuggest a protocol to apply this model when the donor material is shocked twice in rapid succession. Finally, the model and the suggestedapproach are validated using detailed continuum hydrodynamic simulations. The results provide a baseline understanding of the hydrodynamicaspects of ejecta, which can then be used to interpret experimental data from target experiments.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472254 and 11272006)
文摘We conduct molecular dynamics simulations of the ejection process from a grooved Pb surface subjected to supported and unsupported shock waves with various shock-breakout pressures(PSB) inducing a solid–liquid phase transition upon shock or release. It is found that the total ejecta mass changing with PSBunder a supported shock reveals a similar trend with that under an unsupported shock and the former is always less than the latter at the same PSB. The origin of such a discrepancy could be unraveled that for an unsupported shock, a larger velocity difference between the jet tip and its bottom at an early stage of jet formation results in more serious damage, and therefore a greater amount of ejected particles are produced. The cumulative areal density distributions also display the discrepancy. In addition, we discuss the difference of these simulated results compared to the experimental findings.
基金Supported by the National Natural Science Foundation of China under Grant No.10032040。
文摘Sound velocities in shock-loaded solids are not only important to determine bulk moduli of solids at high pressures, but are also crucial to inform the shock melting of solids upon loading. In this letter, we first report on shock melting of porous solids at high pressures by measuring sound velocities in the porous iron of average density 6.90 g/cm^(3) in the pressure range of 110-180 GPa. The measured sound velocity softens at pressures from 122 to 156 Gpa, which may be attributed to shock melting of the porous iron.
基金The Project Supported by National Natural Science Foundation of China
文摘In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/46 cases.Simultaneously,there was a markeddrop in Bp,P【0.05.Following the shocked time prolonged,dysrhythmia was getting severe。AfterEA”Rengzhong"(n=14)or“Zusanli”(n=12),BP was significantly increased(P【0.05),anddysrhythmia of EEG showed clear improvement in most of the rats。There was a close relation be-tween the changes of EEG and BP,the change of EEG had a direct bearing on the change of BP.
基金supported in part by grants from the National Natural Sciences Foundation of China(82130106,32250016,82303774)Natural Science Foundation of Jiangsu Province(BK20230165,BE2023695,BK20231136)+2 种基金China Postdoctoral Science Foundation(2023M731634)Nanjing Special Fund for Life and Health Science and Technology(202110016)Changzhou Municipal Department of Science and Technology(CJ20230017,CJ20220019,CJ20235009)。
文摘Live bacteria-mediated antitumor therapies mark a pivotal point in cancer immunotherapy.However,the difficulty in reconciling the safety and efficacy of bacterial therapies has limited their application.Improving bacterial tumor-targeted delivery while maintaining biosafety is a critical hurdle for the clinical translation of live microbial therapy for cancer.Here,we developed“dead”yet“functional”Salmonella-loaded macrophages using liquid nitrogen cold shock of an attenuated Salmonella typhimurium VNP20009-contained macrophage cell line.The obtained“dead”macrophages achieve an average loading of approximately 257 live bacteria per 100 cells.The engineered cells maintain an intact cellular structure but lose their original pathogenicity,while intracellular bacteria retain their original biological activity and are delay freed,followed by proliferation.This“Trojan horse”-like bacterial camouflage strategy avoids bacterial immunogenicity-induced neutrophil recruitment and activation in peripheral blood,reduces the clearance of bacteria by neutrophils and enhances bacterial tumor enrichment efficiently after systemic administration.Furthermore,this strategy also strongly activated the tumor microenvironment,including increasing antitumor effector cells(including M1-like macrophages and CD8+Teffs)and decreasing protumor effector cells(including M2-like macrophages and CD4+Tregs),and ultimately improved antitumor efficacy in a subcutaneous H22 tumor-bearing mouse model.The cryo-shocked macrophage-mediated bacterial delivery strategy holds promise for expanding the therapeutic applications of living bacteria for cancer.
基金Financial support from the National Natural Science Foundation of China(52372289,52102368,52231007,12327804,T2321003,22088101,22178037 and U22A20424)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project,Liaoning Revitalization Talents Program(XLYC2002114)are highly appreciated.
文摘The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).
基金supported by the National Natural Science Foundation of China (Grant Nos. 10702010, 10775018, and 10771019)Science Foundation of Laboratory of Computational Physics and Science Foundation of China Academy of Engineering Physics (Grant Nos. 2009A0102005 and 2009B0101012)
文摘The physical fields in porous materials under strong shock wave reaction are very complicated. We simulate such systems using the grain contact material point method. The complex temperature fields in the material are treated with the morphological characterization. To compare the structures and evolution of characteristic regimes under various temperature thresholds, we introduce two concepts, structure similarity and process similarity. It is found that the temperature pattern dynamics may show high similarity under various conditions. Within the same material, the structures and evolution of high-temperature regimes may show high similarity if the shock strength and temperature threshold are chosen appropriately. For process similarity in materials with high porosity, the required temperature threshold increases parabolically with the impact velocity. When the porosity becomes lower, the increasing rate becomes higher. For process similarity in different materials, the required temperature threshold and the porosity follow a power-law relationship in some range.
基金supported by the Natural Science Foundation of China(Grant Nos.91952205,and 11625211)the Tamkeen under the NYU Abu Dhabi Research Institute(Grant No.CG002)。
文摘Hydrodynamic instabilities induced by a shock wave can be observed in both natural phenomena and engineering applications,and are frequently employed to study gas dynamics, vortex dynamics, and turbulence. Controlling these instabilities is very desirable, but remains a challenge in applications such as inertial confinement fusion. The field of “shock-gas-layer interaction” has experienced rapid development, driven by advances in experimental and numerical techniques as well as theoretical understanding. This domain has uncovered a diverse array of wave patterns and hydrodynamic instabilities, such as reverberating waves, feedthrough, abnormal and freeze-out Richtmyer-Meshkov instability, among others. Studies have shown that it is possible to suppress these instabilities by appropriately configuring a gas layer. Here we review the recent progress in theories,experiments, and simulations of shock-gas-layer interactions, and the feedthrough mechanism, the reverberating waves and their induced additional instabilities, as well as the convergent geometry and reshock effects, are focused. The conditions for suppressing hydrodynamic instabilities are summarized. The review concludes by highlighting the challenges and prospects for future research in this area.
文摘The aim of this study is to compare the experimentally shock-induced features with those in naturally shocked chondrites and to test the feasibility of experimentally calibrating naturally induced features in shocked H- and L-chondrites. Samples of the Jilin chondrite (H5) were experimentally shock-loaded at the following peak pressures: 12, 27, 39, 53, 78, 83, 93 and 133 GPa respectively. Chondritic melts were first obtained at P>78 GPa and more than 60% melting was achieved at P^133 GPa. No high-pressure phases were observed in any of the shocked samples, neither in the deformed nor in the molten regions. Textural relations and mineral assemblages of the shocked samples are comparable to those encountered in the heavily shocked H-chondrite Yanzhuang but differ considerably from those found in heavily shocked L6 chondrites. Shock melt veins in L6 chondrites contain high-pressure polymorphs of olivine and pyroxene and high pressure liquidus phases. Scaling from shock experiments on millimeter-sized samples to natural shock features on kilometer-sized asteroids poses considerable problems in quantifying the P-T conditions during natural shock events on asteroids.
基金Project supported by the Science Foundation of Guangdong Province, PRC
文摘1 Introduction The information of the deformation and phase transformation of minerals under the impact of different intensities can be obtained from some meteorites. Therefore, meteorites are good samples for the study of shock effects of minerals in natural impact process. Orthopyroxene is a kind of main rock-forming mineral in chondrite. The study of
文摘The latest applications of laser shock processing were summarized in this paper,and laser peening with water confined layer has been applied to Ti6Al4V titanium alloy using Nd:glass pulse laser.The profile of plastic deformation and residual stresses on metal surface were studied with different laser power density.The investigation results show that peak depth of plastic deformation is in linear proportion to laser power density (5.75GW/cm2 to 9.5 GW/cm2),and maximal surface compressive residual stress is up to 375MPa at 8.25GW/cm2.It was ensured that the compressive residual stress field related to laser power density and shocked times.As spot overlapping ratio of 33%,the circle spot can get a relative smooth surface.Almen strip with thickness 2.5mm was shocked as the preliminary verification test of residual stresses,and it is shown that excessive peening times is unavailable to thin-wall parts just as edge of fan blades.
基金supported by the National Key R&D program of China No.2021YFA0718600NNFSC grants 42150105,42188101,and 42274210the Specialized Research Fund for State Key Laboratories of China。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.