期刊文献+
共找到354篇文章
< 1 2 18 >
每页显示 20 50 100
Improved Short Term Energy Load Forecasting Using Web-Based Social Networks
1
作者 Mehmed Kantardzic Haris Gavranovic +2 位作者 Nedim Gavranovic Izudin Dzafic Hanqing Hu 《Social Networking》 2015年第4期119-131,共13页
In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related... In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related systems. Other relevant domains of data include scheduled activities on a grid, large events and conventions in the area, equipment duty cycle schedule, data from call centers, real-time traffic, Facebook, Twitter, and other social networks feeds, and variety of city or region websites. All these distributed data sources pose information collection, integration and analysis challenges. Our approach is concentrated on complex non-cyclic events detection where detected events have a human crowd magnitude that is influencing power requirements. The proposed methodology deals with computation, transformation, modeling, and patterns detection over large volumes of partially ordered, internet based streaming multimedia signals or text messages. We are claiming that traditional approaches can be complemented and enhanced by new streaming data inclusion and analyses, where complex event detection combined with Webbased technologies improves short term load forecasting. Some preliminary experimental results, using Gowalla social network dataset, confirmed our hypothesis as a proof-of-concept, and they paved the way for further improvements by giving new dimensions of short term load forecasting process in a smart grid. 展开更多
关键词 short term energy Load Forecasting Smart Grid SOCIAL Networks EVENT Detection
下载PDF
Study on medium-short term earthquake forecast in Yunnan Province by precursory events
2
作者 QIN Jia-zheng(秦嘉政) +1 位作者 QIAN Xiao-dong(钱晓东) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第2期152-163,共12页
The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative r... The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative releasing model of precursory earthquake energy. By fitting the observed data with the theoretical formula, a medium-short term forecast technique for the main shock events could be established, by which the location, time and magnitude of the main shock could be determined. The data used in the paper are obtained from the earthquake catalogue recorded by Yunnan Regional Seismological Network with a time coverage of 1965~2002. The statistical analyses for the past 37 years show that the data of M2.5 earthquakes were fairly complete. In the present paper, 30 main shocks occurred in Yunnan region were simulated. For 25 of them, the forecasting time and magnitude from the simulation of precursory sequence are very close to the actual values with the precision of about 0.57 (magnitude unit). Suppose that the last event of the precursory sequence is known, then the time error for the forecasting main shock is about 0.64 year. For the other 5 main shocks, the simulation cannot be made due to the insufficient precursory events for the full determination of energy accelerating curve or disturbance to the energy-release curve. The results in the paper indicate that there is no obviously linear relation in the optimal searching radius for the main shock and the precursory events because Yunnan is an active region with damage earthquakes and moderate and small earthquakes. However, there is a strong correlation between the main shock moment and the coefficient k/m. The optimal fitting range for the forecasting time and magnitude can be further reduced using the relation between the main shock moment lgM0 and the coefficient lgk/m and the value range of the restricting index m, by which the forecast precision of the simulated main shock can be improved. The time-to-failure method is used to fit 30 main shocks in the paper and more than 80% of them have acquired better results, indicating that the method is prospective for its ability to forecast the known main shock sequence. Therefore, the prospect is cheerful to make medium-short term forecast for the forthcoming main shocks by the precursory events. 展开更多
关键词 time-to-failure method precursory event energy accelerating curve medium-short term forecast Yunnan region
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
3
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
基于SDP和MCNN-LSTM的齿轮箱故障诊断方法
4
作者 吴胜利 周燚 邢文婷 《振动与冲击》 EI CSCD 北大核心 2024年第15期126-132,178,共8页
齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参... 齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参数的选取。结合多尺度卷积神经网络(multi-scale convolutional neural network, MCNN)的空间处理优势、长短时记忆网络(long short term memory, LSTM)的时间处理优势及其良好的抗噪性和鲁棒性,提出了一种基于SDP和MCNN-LSTM的齿轮箱故障诊断模型。同时利用东南大学齿轮箱数据集,验证了基于SDP和MCNN-LSTM的齿轮箱故障诊断方法对齿轮和轴承常见故障类型特征提取的有效性,并与现有其他故障诊断方法进行对比,结果表明了所提方法具有更高的精度。 展开更多
关键词 齿轮箱故障诊断 对称点图案(SDP) 最小能量误差 多尺度卷积神经网络(MCNN) 长短时记忆网络(LSTM)
下载PDF
基于改进NSGA-Ⅲ的原油短期调度能耗优化
5
作者 侯艳 牛聪 +1 位作者 滕少华 朱清华 《工业工程》 2024年第6期38-50,共13页
为了进一步提高原油短期调度问题的求解质量和优化效果,本文针对原油处理短期调度优化问题,提出一个两阶段优化求解策略。通过对供油罐到蒸馏塔的指派过程的分析,设计出能够成段保留父代基因的交叉算子和自适应改变变异概率的变异算子,... 为了进一步提高原油短期调度问题的求解质量和优化效果,本文针对原油处理短期调度优化问题,提出一个两阶段优化求解策略。通过对供油罐到蒸馏塔的指派过程的分析,设计出能够成段保留父代基因的交叉算子和自适应改变变异概率的变异算子,提出NSGA-Ⅲ-ACMO算法求解原油短期调度问题。该算法在具有良好收敛性的同时又保证了种群的多样性,同时优化原油在管道的混合成本、罐底的混合成本、蒸馏塔的换罐成本、供油罐使用成本和能耗成本5个目标。针对能耗目标优化不彻底的问题,提出一个新的混合整数线性规划模型进一步优化能耗。该模型的优点是对于一个已知的详细调度,在不影响其他目标的情况下,可以将能耗目标优化到最小。实例分析表明,通过NSGA-Ⅲ-ACMO算法所得的调度与已有文献结果对比,单个目标优化效果提升9%~45%不等。在此基础上,使用本文提出的混合整数线性规划模型,能耗成本可以降低6.8%。从整体上看,本文所提算法在求解质量和优化效果上都表现出明显的优越性。 展开更多
关键词 原油短期调度 自适应算子 能耗优化 混合整数线性规划
下载PDF
基于SSA-LSTM模型的水电站能效综合评价方法 被引量:3
6
作者 闫孟婷 陶湘明 +3 位作者 王胜军 金艳 黄炜斌 马光文 《水电能源科学》 北大核心 2024年第2期177-182,共6页
随着我国电力体制改革不断深化,水电已告别传统粗放型发展模式,亟需配套更为成熟、通用的能效评价体系指导水电运行调度工作。因此,提出一种基于深度学习的水电站能效综合评价方法,引入长短期记忆网络(LSTM)构建水电站理论发电量模型,... 随着我国电力体制改革不断深化,水电已告别传统粗放型发展模式,亟需配套更为成熟、通用的能效评价体系指导水电运行调度工作。因此,提出一种基于深度学习的水电站能效综合评价方法,引入长短期记忆网络(LSTM)构建水电站理论发电量模型,对于给定的原始发电序列,利用奇异谱分析(SSA)提取出其趋势项、周期项及噪声,对前二者分别构建LSTM网络模拟后叠加得到理论发电量计算结果,在此基础上提出相对增发效益指标、能效相对提高率指标,利用熵权法得到水电站综合得分值,进而对南部某省12座电站进行能效评价。结果表明,该方法可以充分反映水电在调度运行中的能效特点,研究结果对优化水电站调度策略、提高水电调度水平具有借鉴意义。 展开更多
关键词 水电站 理论发电量 能效评价 奇异谱分析 长短期记忆网络
下载PDF
LSTM-EKF算法实现储能集装箱电芯SOC的优化估计 被引量:2
7
作者 刘巨 任羽纶 +6 位作者 易柏年 董哲 余轶 熊志 余紫荻 王映祺 刘健 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第2期198-206,共9页
储能集装箱是锂电池储能电站的核心设备,每个集装箱由数千只电芯串并联构成。因此,对集装箱电芯锂电池荷电状态(state of charge,SOC)的准确估计成为表征储能电站运行最核心最基础的参数,并且为辅助新能源高效并网,储能系统的工作状态... 储能集装箱是锂电池储能电站的核心设备,每个集装箱由数千只电芯串并联构成。因此,对集装箱电芯锂电池荷电状态(state of charge,SOC)的准确估计成为表征储能电站运行最核心最基础的参数,并且为辅助新能源高效并网,储能系统的工作状态也会相应地呈现随机性、波动性和不确定性,这对电芯状态估计的准确度提出了更高的要求。为此,首先基于基尔霍夫定律建立Thevenin电池模型,根据安时积分法列出系统的状态和观测方程,并且将其状态和观测方程作为扩展卡尔曼滤波(extended Kalman filtering,EKF)算法的研究对象。然后利用EKF算法对估计值电池SOC更新迭代,再将EKF算法中得到的卡尔曼矩阵和状态变量更新误差值以及UDDS工况下的电池数据,作为长短期记忆(long short-term memory,LSTM)神经网络算法的训练数据集,由此完成LSTM-EKF联合算法,实现对储能集装箱电芯SOC的优化估计。该文所提LSTM-EKF算法可将电芯SOC的误差值降低到1%以下。最后对优化算法在储能电站安全运行与监控平台中的应用情况进行介绍。 展开更多
关键词 储能集装箱 锂电池SOC 扩展卡尔曼滤波 长短期记忆神经网络 优化估计
下载PDF
Parallel Reinforcement Learning-Based Energy Efficiency Improvement for a Cyber-Physical System 被引量:17
8
作者 Teng Liu Bin Tian +1 位作者 Yunfeng Ai Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期617-626,共10页
As a complex and critical cyber-physical system(CPS),the hybrid electric powertrain is significant to mitigate air pollution and improve fuel economy.Energy management strategy(EMS)is playing a key role to improve the... As a complex and critical cyber-physical system(CPS),the hybrid electric powertrain is significant to mitigate air pollution and improve fuel economy.Energy management strategy(EMS)is playing a key role to improve the energy efficiency of this CPS.This paper presents a novel bidirectional long shortterm memory(LSTM)network based parallel reinforcement learning(PRL)approach to construct EMS for a hybrid tracked vehicle(HTV).This method contains two levels.The high-level establishes a parallel system first,which includes a real powertrain system and an artificial system.Then,the synthesized data from this parallel system is trained by a bidirectional LSTM network.The lower-level determines the optimal EMS using the trained action state function in the model-free reinforcement learning(RL)framework.PRL is a fully data-driven and learning-enabled approach that does not depend on any prediction and predefined rules.Finally,real vehicle testing is implemented and relevant experiment data is collected and calibrated.Experimental results validate that the proposed EMS can achieve considerable energy efficiency improvement by comparing with the conventional RL approach and deep RL. 展开更多
关键词 Bidirectional long short-term memory(LSTM)network cyber-physical system(CPS) energy management parallel system reinforcement learning(RL)
下载PDF
计及能源自洽率和共享氢储能的电-氢-交通耦合配电网低碳经济运行 被引量:2
9
作者 苏小玲 陈来军 +2 位作者 赵超凡 曹博文 刘立泽 《高电压技术》 EI CAS CSCD 北大核心 2024年第6期2424-2432,共9页
新型储能的多元化发展为能源资源的优化配置和就地高水平消纳奠定了基础,为此提出了一种计及能源自洽率和共享氢储能(shared hydrogenstorage,SHS)的能源网低碳经济调度方法。设计了包含电负荷-氢负荷的氢燃料电池车(hydrogen fuel cell... 新型储能的多元化发展为能源资源的优化配置和就地高水平消纳奠定了基础,为此提出了一种计及能源自洽率和共享氢储能(shared hydrogenstorage,SHS)的能源网低碳经济调度方法。设计了包含电负荷-氢负荷的氢燃料电池车(hydrogen fuel cell vehicle,HFCV)交通网与新能源配电网双向耦合架构。在此基础上,以提高能源自洽率、降低碳排放成本为目标,综合考虑配电网、交通网、氢储能系统的运行约束条件以及短期氢储能(short-term hydrogenstorage,STHS)和SHS服务,建立了电-氢-交通耦合配电网的低碳经济优化调度模型,并给出了基于精英遗传算法(elitist strategy genetic algorithm,ESGA)的求解方法。算例分析证明,提出的方法可有效提升电-氢-交通耦合网络能源自洽率、降低整体系统碳排放成本。 展开更多
关键词 能源自洽率 --交通耦合 新型储能 共享氢储能 短期氢储能
下载PDF
基于N-BEATS的能源互联网短期负荷预测 被引量:1
10
作者 尹浩然 张玲华 《电子设计工程》 2024年第11期76-81,共6页
短期负荷预测在能源互联网的规划中既占重要组成部分,又是能源系统可靠高效运行的基础。在能源互联网中能源的短期负荷预测精度问题是人们重点关注问题。N-BEATS的深度神经结构未使用时序特别组成成分,仅使用一种基于后向和前向残差链... 短期负荷预测在能源互联网的规划中既占重要组成部分,又是能源系统可靠高效运行的基础。在能源互联网中能源的短期负荷预测精度问题是人们重点关注问题。N-BEATS的深度神经结构未使用时序特别组成成分,仅使用一种基于后向和前向残差链路以及非常深的全连接层堆栈的深度神经架构。该结构具有可解释性、适用于广泛的目标域、并且训练速度快等优点。实验使用N-BEATS模型对历史负荷数据进行训练,然后对未来负荷进行短期负荷预测,取得了较高的预测精度。测得平均绝对百分比误差(eMAPE)为1.26%,平均绝对误差(eMAE)为84.238 kW,决定系数(R^(2))为0.9955,实验结果表明采用该方法的预测精度高于传统的预测方法,如在eMAPE方面相比TCN降低了0.61%。 展开更多
关键词 能源互联网 短期负荷预测 N-BEATS网络模型 深度学习 时间序列
下载PDF
基于改进Shapley值法的风-光-水-储多主体互补发电系统合作增益分配策略 被引量:3
11
作者 段佳南 谢俊 +2 位作者 赵心怡 常逸凡 葛远裕 《电力自动化设备》 EI CSCD 北大核心 2024年第3期22-30,共9页
为了充分发挥系统中可调节资源的自身优势,利用变速抽水蓄能机组配合小水电机组进行常规调节,并考虑变速抽水蓄能机组的快速响应特性,提出了兼顾系统小时级以及秒级安全性的风-光-水-储多主体互补发电系统的联合优化调度模型。为了降低... 为了充分发挥系统中可调节资源的自身优势,利用变速抽水蓄能机组配合小水电机组进行常规调节,并考虑变速抽水蓄能机组的快速响应特性,提出了兼顾系统小时级以及秒级安全性的风-光-水-储多主体互补发电系统的联合优化调度模型。为了降低合作博弈高效性算法线性增长的计算复杂度,基于改进Shapely值法提出了一种大规模利益主体的合作增量效益(增益)分配策略。通过资源聚合,对高维度问题进行降维处理,利用Shapley值法进行初始分配;构建合作增益贡献指标,采用非对称纳什谈判理论对同类型的不同主体进行细化分配。以某流域风-光-水-储10主体互补发电系统为仿真算例,结果表明:抽水蓄能机组与小水电机组互补运行可以提升系统的灵活性和安全性;基于改进Shapley值法的合作增益分配策略具有计算高效性以及应用可行性。 展开更多
关键词 ---储多主体互补发电系统 短期调度 合作博弈论 合作增益分配 改进Shapley值法 非对称纳什谈判理论
下载PDF
风电-光伏-抽蓄-电制氢多主体能源系统增益的合作博弈分配策略 被引量:1
12
作者 段佳南 谢俊 邢单玺 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期872-880,I0002,I0003,共11页
根据清洁能源示范基地的建设需求,提出基于合作博弈论的风电-光伏-抽蓄-电制氢多主体能源系统联合优化运行的增益分配策略.为兼顾系统运行安全性,构建上网出力互补性评价指标.风电、光伏、抽蓄、电制氢利益主体通过内部电量交易进行合作... 根据清洁能源示范基地的建设需求,提出基于合作博弈论的风电-光伏-抽蓄-电制氢多主体能源系统联合优化运行的增益分配策略.为兼顾系统运行安全性,构建上网出力互补性评价指标.风电、光伏、抽蓄、电制氢利益主体通过内部电量交易进行合作,以系统运行收益最大为优化目标构建联合优化调度模型.根据调度结果,应用合作博弈论中的最大最小成本法分配系统合作增量收益.利用风电-光伏-抽蓄-电制氢清洁能源示范基地12利益主体系统算例进行仿真验证,结果表明联合优化运行可实现各利益主体自身收益正增长,抽蓄库容、上网电价以及运行安全性需求会影响系统的合作增量收益. 展开更多
关键词 风电-光伏-抽蓄-电制氢多主体能源系统 短期调度 增益分配策略 合作博弈论 最大最小成本法
下载PDF
基于MIC-EEMD-改进Informer的含高比例清洁能源与储能的电力市场短期电价多步预测 被引量:5
13
作者 许越 李强 崔晖 《电网技术》 EI CSCD 北大核心 2024年第3期949-957,共9页
随着电力现货市场的开展,短期电价预测对于各市场主体的决策有着重要意义,而高比例清洁能源与储能的不断接入给短期电价预测带来很大挑战。提出一种基于最大信息系数法(maximum information coefficient,MIC)、集成经验模态分解(ensembl... 随着电力现货市场的开展,短期电价预测对于各市场主体的决策有着重要意义,而高比例清洁能源与储能的不断接入给短期电价预测带来很大挑战。提出一种基于最大信息系数法(maximum information coefficient,MIC)、集成经验模态分解(ensemble empirical mode decomposition,EEMD)和改进Informer的短期电价多步预测模型。首先,采用MIC分析出与电价相关性较高的几类因素作为模型原始输入序列;然后,将上述原始序列进行EEMD分解后得到多条本征模函数(intrinsic mode function,IMF)和一个残余项后输入改进Informer分别得到翌日24点多步预测结果,再对预测结果进行滤波;最后,将滤波后序列的预测结果叠加得到最终的预测值。以西班牙电力市场数据进行验证,实验结果证明该模型可以有效提高电力市场短期电价多步预测精度。 展开更多
关键词 高比例清洁能源 短期电价多步预测 最大信息系数 集成经验模态分解 改进Informer
下载PDF
基于GRA-GWO-LSTM的多元负荷协同预测方法
14
作者 李文 卜凡鹏 +2 位作者 王坤 高宇琪 时国华 《科学技术与工程》 北大核心 2024年第36期15518-15525,共8页
精准的多元负荷预测有助于综合能源系统的合理规划和优化运行。针对多元负荷预测时输入参数难确定和模型网络参数较难合理设置的问题,提出一种建筑电、冷、热多元负荷协同预测方法。首先,考虑到不同输入参数对多元负荷的影响,采用灰色... 精准的多元负荷预测有助于综合能源系统的合理规划和优化运行。针对多元负荷预测时输入参数难确定和模型网络参数较难合理设置的问题,提出一种建筑电、冷、热多元负荷协同预测方法。首先,考虑到不同输入参数对多元负荷的影响,采用灰色关联度分析法(grey relation analysis,GRA)计算各输入参数与负荷间的相关性,选择灰色关联度大于0.6的参数作为模型输入;同时利用灰狼优化算法(grey wolf optimizer,GWO)对长短时记忆神经网络(long short-term memory,LSTM)中的关键网络参数进行优化,建立GRA-GWO-LSTM多元负荷预测模型;最后,以亚利桑那州立大学为例,通过与单一神经网络模型和混合神经网络模型GWO-LSTM对比,所提预测模型在电、冷、热负荷长期预测上具有更高的预测精度,较LSTM模型和GWO-LSTM模型的平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了31.64%和23.47%,且其对短期负荷预测也具有良好预测性能,可用于指导综合能源系统的规划和智能化运行。 展开更多
关键词 多元负荷预测 深度学习 长短时记忆神经网络(LSTM) 灰狼优化算法(GWO) 灰色关联度分析法(GRA)
下载PDF
基于注意力机制的CNN-LSTM建筑能耗预测方法研究 被引量:2
15
作者 高致源 邢建春 +1 位作者 张学伟 邓忠凯 《暖通空调》 2024年第8期48-55,共8页
建筑能耗分析预测是提高建筑用能效率的关键技术,是响应国家“双碳”战略的重要手段。由于建筑能耗数据具有强时序性特点,利用传统的深度学习技术难以有效提取数据中的高维特征,且易丢失重要信息。为此,本文提出了一种基于注意力机制的C... 建筑能耗分析预测是提高建筑用能效率的关键技术,是响应国家“双碳”战略的重要手段。由于建筑能耗数据具有强时序性特点,利用传统的深度学习技术难以有效提取数据中的高维特征,且易丢失重要信息。为此,本文提出了一种基于注意力机制的CNN-LSTM建筑能耗预测方法,该方法利用CNN提取能耗数据中的空间特征、LSTM处理时序数据、注意力机制确定特征权重,提高了模型预测精度。 展开更多
关键词 建筑能耗 预测 深度学习 卷积神经网络 长短时记忆网络 注意力机制
下载PDF
基于多任务双层注意力优化的TCN-BiGRU综合能源负荷短期预测
16
作者 倪建辉 张菁 《控制工程》 CSCD 北大核心 2024年第11期1924-1936,共13页
基于多元负荷预测是综合能源系统(IES)生产计划和能源调度的前提,提出一种基于多任务双层注意力优化的时序卷积网络与双向门控循环单元相结合(TCN-BiGRU)的综合能源负荷短期预测方法。首先,将特征集通过最大互信息系数法进行相关性分析... 基于多元负荷预测是综合能源系统(IES)生产计划和能源调度的前提,提出一种基于多任务双层注意力优化的时序卷积网络与双向门控循环单元相结合(TCN-BiGRU)的综合能源负荷短期预测方法。首先,将特征集通过最大互信息系数法进行相关性分析,构建不同负荷的输入特征集;然后,输入多任务学习平台进行离线训练,其中的共享层采用高效通道注意力网络(ECANet)优化的TCN,特定任务层则采用自注意力机制优化的BiGRU;最后,选取亚利桑那州立大学坦佩校区冬季和夏季典型日的实际数据进行在线测试。测试结果表明,对比多种深度神经网络模型,所提方法在冬季和夏季的多元负荷加权平均绝对百分比误差分别最大降低了69.35%和73.26%,加权均方根误差分别最大降低70.11%和79.46%。 展开更多
关键词 多元负荷短期预测 最大互信息系数 多任务学习 时序卷积网络 双向循环门控单元 高效通道注意力网络
下载PDF
基于特征筛选的综合能源系统多元负荷日前-日内预测
17
作者 徐聪 胡永锋 +1 位作者 张爱平 由长福 《综合智慧能源》 CAS 2024年第3期45-53,共9页
负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下... 负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下最重要的特征,针对日前-日内预测策略分别确立输入特征集;然后通过多任务学习硬共享机制,采用长短期记忆神经网络建立预测模型,实现不同子任务信息共享,并通过随机搜索方法优化网络参数以提高预测精度;最后以北京某产业园区供暖季电、热负荷为案例进行分析,日前、日内预测综合精度分别达到91.3%和95.2%。分析结果表明,该预测方法能够为系统日前调度和日内运行优化提供良好支撑,且预测结果优于未经特征筛选预测和单独负荷预测,证明了该预测方法具有更高的预测精度。 展开更多
关键词 综合能源系统 多元负荷 特征筛选 日前-日内预测 多任务学习 长短期记忆神经网络
下载PDF
基于ATT-TCGNN的综合能源系统多元负荷短期预测
18
作者 李云松 张智晟 《电工电能新技术》 CSCD 北大核心 2024年第9期23-32,共10页
综合能源系统多元负荷之间存在较强的复杂耦合关系,且多元负荷数据具有较强的波动性与随机性。针对上述特点,提出一种基于图神经网络、注意力机制、变分模态分解的多元负荷短期预测模型。首先,对多元负荷数据进行变分模态分解,削弱其波... 综合能源系统多元负荷之间存在较强的复杂耦合关系,且多元负荷数据具有较强的波动性与随机性。针对上述特点,提出一种基于图神经网络、注意力机制、变分模态分解的多元负荷短期预测模型。首先,对多元负荷数据进行变分模态分解,削弱其波动性与随机性;然后,通过经注意力机制改进的图学习网络建立充分反映多元负荷耦合联系性、负荷与气象间关联性的图结构,并用图预测网络对图结构与多元负荷历史数据进行分析,实现多元负荷预测;最终,结合亚利桑那州立大学的实际数据对所提出模型与其他模型进行对比分析,结果表明,所提出模型具有更高的预测精度。 展开更多
关键词 综合能源系统 多元负荷预测 短期 图神经网络 注意力机制 变分模态分解
下载PDF
考虑综合需求响应的Transformer-图神经网络综合能源系统多元负荷短期预测
19
作者 李云松 张智晟 《电工技术学报》 EI CSCD 北大核心 2024年第19期6119-6128,共10页
为提高在需求响应情境下,综合能源系统的多元负荷短期预测精度,基于消费者心理学、响应不确定性原理、耦合响应原理,构建了考虑综合需求响应的Transformer-图神经网络(Trans-GNN)预测模型。通过响应不确定性随电价差产生的变化规律和消... 为提高在需求响应情境下,综合能源系统的多元负荷短期预测精度,基于消费者心理学、响应不确定性原理、耦合响应原理,构建了考虑综合需求响应的Transformer-图神经网络(Trans-GNN)预测模型。通过响应不确定性随电价差产生的变化规律和消费者心理学原理,量化在不同概率条件下的电力需求响应结果。通过耦合响应原理,求解包含冷、热耦合响应的综合需求响应信号,最终利用注意力机制将综合需求响应信号引入Trans-GNN预测模型,提高网络模型在需求响应情境下的多元负荷预测能力。算例分析结果表明,该模型能有效地提高预测精度,为计及综合需求响应的多元负荷预测研究提供了一定的理论基础。 展开更多
关键词 综合能源系统 综合需求响应 耦合响应 图神经网络 Transformer模型 多元负荷短期预测
下载PDF
零碳排放下电-气综合能源系统多能负荷预测
20
作者 舒舟 欧莉玲 +1 位作者 何丰 田诗语 《自动化仪表》 CAS 2024年第2期116-121,共6页
电-气综合能源系统中多能负荷之间的耦合程度不断增加,提升了能源系统调度和运行的难度。为此,对零碳排放下电-气综合能源系统多能负荷预测方法进行了研究。分析零碳排放下电-气综合能源系统的运行架构。以气象因素为影响因子,运用灰色... 电-气综合能源系统中多能负荷之间的耦合程度不断增加,提升了能源系统调度和运行的难度。为此,对零碳排放下电-气综合能源系统多能负荷预测方法进行了研究。分析零碳排放下电-气综合能源系统的运行架构。以气象因素为影响因子,运用灰色关联度分析法获得多能负荷与各因子的相关性。将相关性分析结果与系统历史多能负荷数据共同作为输入数据,构建基础长短期记忆(LSTM)预测模型。结合樽海鞘群算法(SSA)优化模型关键参数,获得优化LSTM预测模型,实现系统多能负荷预测。试验结果表明:冷负荷与电负荷的关联度为0.88;热负荷与电负荷的关联度为0.681;实际预测平均绝对百分误差低于0.45。该方法预测效果理想,为系统最优调度与运行规划奠定了基础。 展开更多
关键词 -气综合能源系统 零碳排放 相关性分析 多能负荷预测 长短期记忆预测模型 灰色关联度 樽海鞘群算法 气象因素
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部